Section 7

QT Abnormalities Other Cardiac Conditions and EKG Abnormalities

Objectives

- At the conclusion of this presentation the participant will be able to
 - Outline a systematic approach to 12 lead ECG interpretation
 - Dysrhythmias
 - Demonstrate the process for determining axis
 - List criteria for LVH, RVH, RAE, LAE LBBB, RBBB, Bifasicular and trifasicular block, acute and chronic MI changes
 - Define QTc significance and other EKG Abnormalities

Causes of Regular, Wide Complex Tachycardia

• Ventricular Tachycardia

• SVT with preexisting BBB

• SVT with aberrant conduction

HIS DEBS

- H ypoxia
- I schemia
- S ympathomimetic disturbances
- D rugs
- E lectrolytes
- B rady
- S tretch

VT vs. SVT with aberrancy

- IT is more likely VT if:
 - Absence of typical RBBB or LBBB
 - Extreme axis deviation (northwest axis)
 - Very broad complexes (> 160 ms)
 - Capture beats
 - Fusion beats
 - Positive or negative concordance throughout chest leads
 - RSR' complexes with a taller left rabbit ear. This is the most specific finding in favor of VT

5

Capture Beats

6

Fusion beats - the first of the narrower complexes is a fusion beat (the next two are capture beats)

9

www.www. W_{v_2} Negative concordance in VT

Northwest Axis

Indeterminate Axis or Northwest Axis

Indeterminate Axis

If the QRS is downward (negative) in lead I and downward (negative) in lead aVF, then the axis is indeterminate and sometimes referred to as "northwestern axis". This finding is uncommon and usually from ventricular rhythms, but can also be from paced rhythms, lead misplacement and certain congenital heart diseases.

Indeterminate Axis of the QRS Complex: Negative in lead I and negative in lead aVF

SVT or AV nodal re-entry tachycardia (AVNRT)

 Classified based on site of origin (atria or AV node) or regularity (regular or irregular)

 QRS width not helpful and influenced by preexisting BBB, Rate related aberrant conduction or accessary pathways

Classification of SVT by site of Origin

	Regular	Irregular
Atrial	ST Atrial Tach Atrial Flutter Inappropriate ST SN re-entrant tach	Atrial Fibrillation Atrial Flutter with variable block Multifocal atrial Tach
Atrioventricular	AV re-entry tach (AVRT) AV nodal re-entry Tach (AVNRT) Automatic Junctional tachycardia	

AVNRT

- Most common cause of palpitations in pts with structurally normal hearts
- Occurs spontaneously or upon provocation (caffeine, ETOH, Beta agonists, sympathomimetics (amphetamines)
- More common in women and may occur in young healthy patients
- Sudden onset of rapid, regular palpitations
- SOB
- Pts with CAD may c/o angina
- Tachy rate 140-220 bpm
- Generally well tolerated
- May cease spontaneously and abruptly

Typical ECG findings

- Regular tachy 140-280 bpm
- QRS complexes usually narrow (< 120 msec) unless pre-existing BBB
- ST-segment depression may be seen without CAD
- QRS alternans
- P waves if visible exhibit retrograde conduction with P-wave inversion in leads II, III, aVF
- P waves may be buried in the QRS

Slow – Fast AVNRT

Example 1a

Typical AVNRT

- Narrow complex Tachycardia
- No visible P-waves
- There are pseudo R' waves in V1-2

Pseudo R' waves in V1-2

Fast-Slow AVNRT

Narrow complex Tachycardia

Retrograde P waves are visible after each QRS complex

Retrograde P waves

Pre-Excitation & Accessory Pathways

- Activation of the ventricles due to impulse bypassing the AV node via an accessary pathway
- Abnormal conduction pathways
- Impulses conduct either antergrade towards the ventricle or retrograde, away or in both directions
- Majority conduct in both directions
- Reentry circuit involving accessary pathways termed Atrioventricular reentry tachycardias (AVRT)

Wolf Parkinson White (WPW)

- PR interval < 120 ms
- Delta wave: slurring slow rise of initial portion of the QRS
- QRS prolongation > 110 ms
- ST segment and T wave discordant changes
- Pseudo-infraction pattern can be seen in up to 70% of patients (pseudo q waves, or prominent R wave in V1-V3 mimicking posterior infarction)

Other Pre-Excitation Syndromes

- Lown-Ganong-Levine (LGL) syndrome
 - Accessary pathway composed of James Fibres

– ECG

- PR interval < 120 ms
- Normal QRS morphology
- The term should not be used in the absence of paroxysmal tachycardia
- Existence is disputed and may not exist

Sinus rhythm with a very short PR interval

Broad QRS with slurred upstroke (delta wave)

Dominant R wave V1

Tall R wave and inverted T wave in V1-3 mimicking RVH Negative Delta wave in aVL (pseudo infarction pattern)

www.lifeinthefastlane.com 26

Common causes of QT Prolongation

• Drugs

Type IA, III Antiarrythmic Tricyclic antidepressants, Psychotropic meds (Haldol, methodone) Phenothiazines Macrolides

- Electrolyte disturbances Hypokalelmia Hypomagnesemia Hypocalcaemia
- CNS disturbances Stroke ICB or Brainstem bleed Coma

Another example of cerebral T-waves with marked QT prolongation secondary to subarachnoid haemorrhage.

Widespread T-wave inversions with slight ST depression secondary to subarachnoid haemorrhage.

The QT interval is prolonged (greater than half the R-R interval).

This ECG pattern could easily be mistaken for myocardial ischaemia as the T-wave morphology is very similar, although obviously the clinical picture would be very different (coma versus chest pain). OAAPN 10/2023

Common causes of ST Depression

- Ischemia
- Strain
- Digitalis effect
- Hypokalemia/hypomagnesemia
- Rate related changes
- Any combination of the above

Common causes of Tall R wave in V1

- WPW
- RBBB
- RVH
- Posterior MI
- Normal variant

Common causes of Nonspecific ST-T wave Abnormalities

- Ischemia
- LVH
- Cardiomyopathy
- MVP
- Drug effect
- Lyte abnormalities
- CNS disorder
- Hyperventilation

- Severe medical illness
- Severe emotional stress
- Exercise
- Hypoxemia
- Acidosis
- Temp extremes
- Other causes

Other Cardiac Conditions

- Many conditions cause changes to the ECG
 - Electrolyte abnormality
 - Ischemia
 - Infarction
 - Inflammation
 - Medications

ECG Changes in Pericarditis

- T wave initially upright and elevated but then during recovery phase it inverts
- ST segment elevated and usually flat or concave

ST segments and T waves are off the baseline, gradually angling back down to the next QRS complex

Pericardial Effusion

- Can occur with pericarditis
- Can cause lowvoltage QRS complexes in all leads and electrical alternans

Electrical Alternans

 QRS complexes change in height with each successive beat

Pulmonary Embolism

- Acute blockage of one of the pulmonary arteries
- Leads to obstruction of blood flow to the lung segment supplied by the artery
- Produces large S wave in lead I, deep Q wave in lead III, inverted T wave in lead III
 - Called the S1 Q3 T3 pattern

Sinus Tach

RBBB

T-wavepinversions in right precordial leads (V1-3) as well Lead III www.lifeinthefastlane.com 39

Pulmonary Embolism

OAAPN 10/2023

Electrolyte Imbalances

 Increases or decreases in potassium and calcium serum levels can have a profound effect on the ECG

Hyperkalemia

- Key characteristics include:
 - T wave peaking
 - Flattened P waves
 - 1st-degree AV heart block
 - Widened QRS complexes
 - Deepened S waves
 - Merging of S and T waves

Definitions

- Hyperkalaemia is defined as a potassium level > 5.5 mEq/L
- Moderate hyperkalaemia is a serum potassium > 6.0 mEq/L
- Severe hyperkalaemia is a serum potassium > 7.0 mE/L

Effects Of Hyperkalaemia On The ECG

Serum potassium > 5.5 mEq/L is associated with repolarization abnormalities:

Peaked T waves (usually the earliest sign of hyperkalaemia)

Serum potassium > 6.5 mEq/L is associated with progressive paralysis of the atria:

- P wave widens and flattens
- PR segment lengthens
- P waves eventually disappear

Serum potassium > 7.0 mEq/L is associated with conduction abnormalities and bradycardia:

- Prolonged QRS interval with bizarre QRS morphology
- High-grade AV block with slow junctional and ventricular escape rhythms
- Any kind of conduction block (bundle branch blocks, fascicular blocks)
- Sinus bradycardia or slow AF
- Development of a sine wave appearance (a pre-terminal rhythm)

Serum potassium level of > 9.0 mEq/L causes cardiac arrest due to:

- Asystole
- Ventricular fibrillation

OAAPN 10/2025A with bizarre, wide complex rhythm

Hyperkalemia

OAAPN 10/2023

Suspect Hyperkalemia

• New bradycardia

 New AV block especially with CKD or ESRD taking ACE-I or potassium sparing meds

Hypokalemia

- Key ECG characteristics include:
 - ST segment depression
 - Flattening of the T wave
 - Appearance of U waves

Example 1

Hypokalaemia:

- ST depression.
- T wave inversion.
- Prominent U waves.
- Long QU interval.

OAAPN 10/2023 This patient had a serum K+ of 1.7

Handy Tips

- Hypokalaemia is often associated with hypomagnesaemia, which increases the risk of malignant ventricular arrhythmias
- Check potassium and magnesium in any patient with an arrhythmia
- Top up the potassium to 4.0-4.5 mmol/l and the magnesium to > 1.0 mmol/l to stabilise the myocardium and protect against arrhythmias – this is standard practice in most CCUs and ICUs

With worsening hypokalaemia:

- Frequent supraventricular and ventricular ectopics
- · Supraventricular tachyarrhythmias: AF, atrial flutter, atrial tachycardia
- · Potential to develop life-threatening ventricular arrhythmias, e.g. VT, VF and Torsades de Pointes

Hypocalcemia

Hypercalcemia Sodium-Cell membrane potassium pump - Charge Cell interior Short QT interval + Charge Hypocalcemia Sodium-Cell membrane potassium pump - Charge Cell interior Prolonged QT interval + Charge

 QT interval slightly prolonged

Definitions

- Normal serum corrected calcium = 2.2 2.6 mmol/L.
- Mild-moderate hypocalcaemia = 1.9 2.2 mmol/L.
- Severe hypocalcaemia = < 1.9 mmol/L.</p>

Causes

- Hypoparathyroidism
- Vitamin D deficiency
- Acute pancreatitis
- Hyperphosphataemia
- Hypomagnesaemia
- Diuretics (frusemide)
- Pseudohypoparathyroidism
- Congenital disorders (e.g. <u>DiGeorge syndrome</u>)
- Critical illness (e.g. sepsis)
- Factitious (e.g. EDTA blood tube contamination)

Symptoms

- Neuromuscular excitability
- Carpopedal spasm
- Tetany
- Chvostek's sign
- Trousseau's sign
- Seizures

ECG Changes

- Hypocalcaemia causes <u>QTc prolongation</u> primarily by prolonging the ST segment.
- The T wave is typically left unchanged.
- Dysrhythmias are uncommon, although atrial fibrillation has been reported.

OAAPN 10/2023

<u>Torsades de pointes</u> may occur, but is much less common than with <u>hypokalaemia</u> or hypomagnesaemia.

Hypocalcaemia

Brugada Syndrome

- There is really only one type of Brugada syndrome
- Diagnosis depends on Characteristic ECG finding and clinical criteria
- Further risk stratification is controversial
- Definitive treatment is an ICD
- Brugada sign in isolation is of questionable significance

Etiology of Brugada

 Mutation in the cardiac sodium channel gene; often referred to as a sodium channelopathy

Over 60 have been described with 50% being spontaneous mutations

• There is a familial clustering and autosomal dominant inheritance

Things that can unmask Brugada EKG changes

- Fever
- Ischemia
- Multiple drugs
 - Sodium channel blockers: flecainide, propafenone
 - ССВ
 - Alpha agnoists
 - BB
 - Nitrates
 - Cholinergic stimulation
 - Cocaine
 - ETOH
 - Hypokalemia
 - Hypothermia
 - Post DCC

EKG Criteria for TYPE 1

- Coved ST Segment > 2mm in >1 of V1-V3 followed by a negative T wave
- Only EKG abnormality that is potentially diagnostic
- Referred to as a Brugada sign

ECG associated clinical criteria

- Documented VF or Polymorphic VT
- Family history of SCD at < 45 yrs of age
- Inducibility of VT w programmed electrical stim
- Syncope
- Nocturnal agonal respiration

Λ

500ms

59

Limb reversal

- Various configurations can occur
- If you think the limbs are reversed, ask for a do over
- Know what a normal EKG looks like
- If possible, have an old EKG for comparison
- Does the pt look different or is complaining of cardiac/pulmonary issues?
- What are the VS?

Normal Limb ECG Findings

LA/RA reversal

Baseline ECG

LA/RA reversal

LA/LL reversal

RA/LL Reversal

RA/LL reversal

RA/RL reversal

Baseline ECG

LA/RL reversal

Baseline ECG

LA/RL(N) reversal

Bilateral Arm-Leg Reversal (LA-LL plus RA-RL)

OAAPN 10/2023

LL/RL reversal

Baseline ECG

Summary The KISS Principle

"True" lead	ŀ	II	ш	aVR	aVL	aVF	V1– V6
Reversal							
LA / RA	-1	111	П	aVL	aVR	aVF	No change
LA / LL	П	1	- 111	aVR	aVF	aVL	No change
RA / LL	- 111	- 11	-1	aVF	aVL	aVR	No change
Clockwise	111	-1	- 11	aVL	aVF	aVR	No change
Anti- Clockwise	- 11	-	L	aVF	aVR	aVL	No change

- RA—right arm; LA—left arm; LL—left leg;
- Clockwise rotation: RA→LA→LL→RA;
- Anti-clockwise rotation: RA→LL→LA→RA.
- The (-) sign signifies that the respective lead is inverted

Feeling confused?

Practice makes improvement

Systematic approach

Compare	Compare with old ECG
Look	Look at Rate
Look	Look at Rhythm
Look	Look at Axis
Look	Look at Hypertrophy
Look	Look at I's and others •Intervals, ischemia, injury, infarct
Get some good Reference material

- Only EKG Book you'll ever need, 8th ed. Malcom S. Thaler, ISBN-13: 978-1-4511-9394
- A Practical Guide to ECG Interpretation: Ken Grauer, ISBN 0-8016-2159-3
- <u>https://litfl.com/ecg-library/</u>
- <u>EKG / ECG Interpretation Reading a 12 lead electrocardiogram</u>
- https://ecg.bidmc.harvard.edu/maven/mavenmain.asp
- http://www.clinicalskills.pitt.edu/electrocardiogram-interpretation/

The End

- Thank you for listening
- Please contact me with questions

- Louann Bailey at <u>Lbaileycrnp@outlook.com</u>
- Happy EKG reading!