Pulmonary Medicine

Mallory Hatmaker, APRN.CNP

Cleveland Clinic Respiratory Institute

OBJECTIVES

Participants should gain basic knowledge of interpreting spirometry tests to diagnose asthma, COPD and other chronic lung diseases COPD- participants should be able to diagnose, treat, and prescribe proper pharmacological medications for managing COPD patients both maintenance and exacerbations Asthma- participants should be able to diagnose, treat and prescribe proper pharmacological medications for managing Asthma patients both maintenance and exacerbations

Participants should gain knowledge on prescribing proper pharmacological treatment for tobacco cessation Patients should gain knowledge on interstitial lung diseases and updates related to respiratory conditions post COVID19

PULMONARY FUNCTION TESTS

PFTS

SPIROMETERY

LUNG FUNCTION TESTING

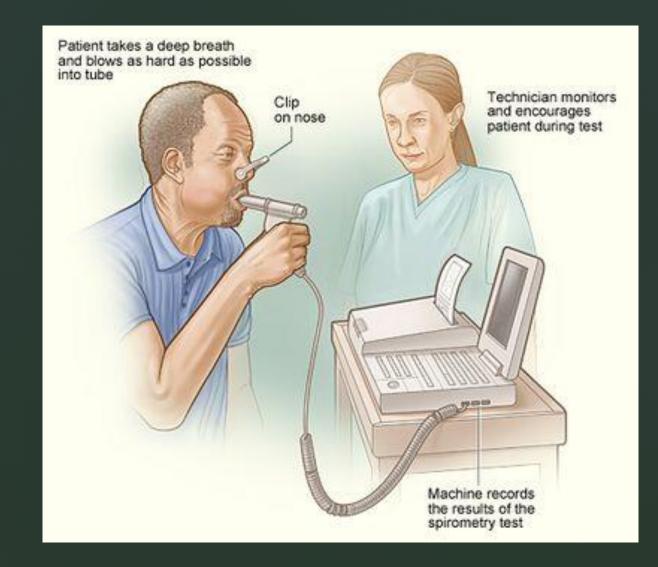
INDICATIONS FOR PULMONARY FUNCTION TESTING

- Preoperative evaluation
- Evaluating patients with pulmonary complaints
- Assessing treatment effectiveness
- Monitoring disease progress
- Screening certain patient populations
- Research

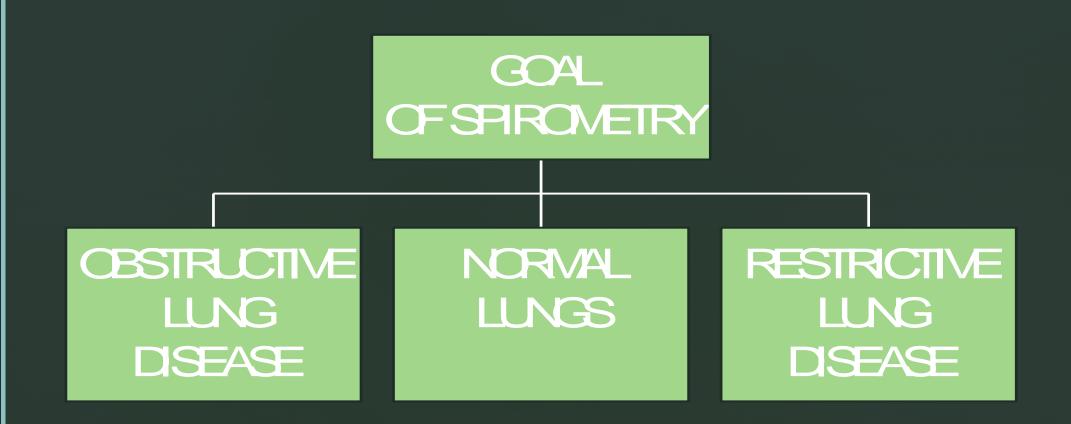
Ferguson GT, Enright PL, Buist S, Higgins MW.; Office spirometry for lung health assessment in adults. Chest 2000 1146-1161. Consensus statement of the National Lung Health Education Program (NLHEP)

-input from ACCP and NHLBI

Recommended spirometry for:

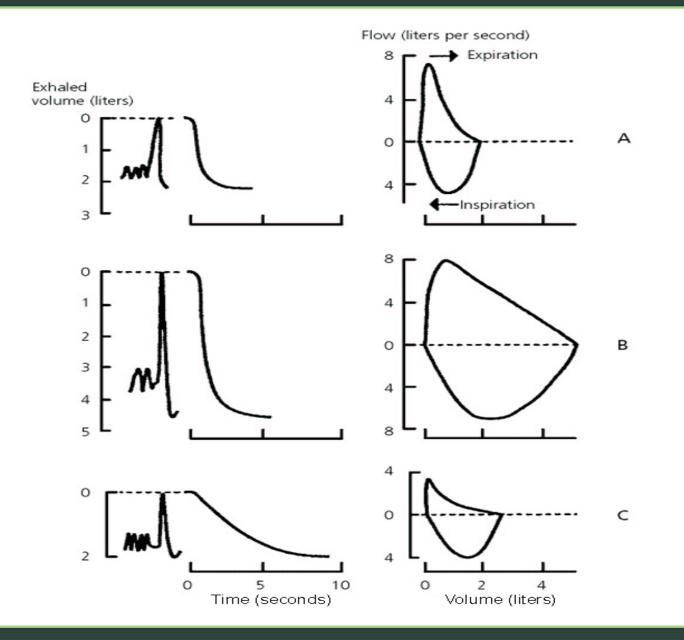

- -smokers >45 years old
- -patients with pulmonary complaints
- -global health assessment

In 2016, USPSTF/AAFP recommended against screening with

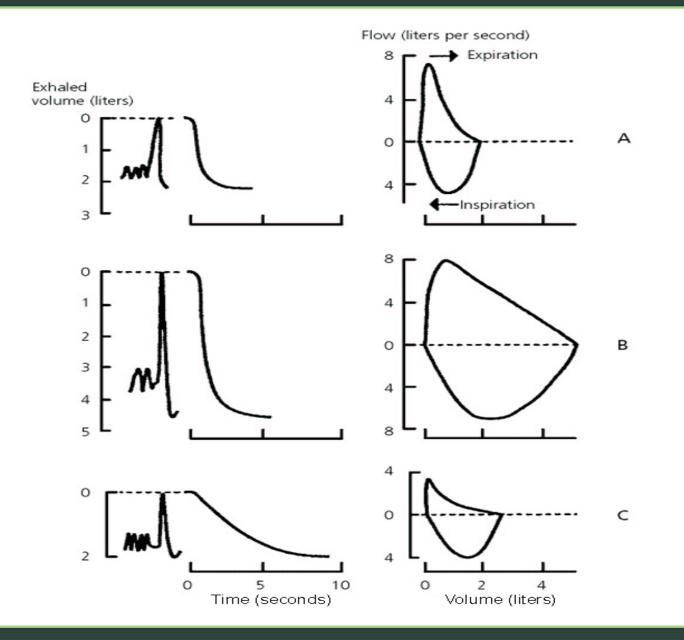

spirometry for asymptomatic adults even if they smoke

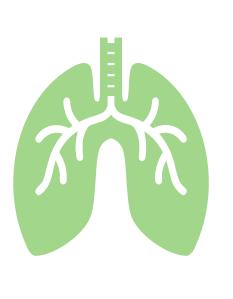
SPIROMETRY

- Most commonly ordered test
- Appropriate for most situations
- Procedure:
- -a seated patient, usually wearing noseclips, inhales maximally to Total Lung Capacity (TLC) and then exhales maximally
- -3 attempts completed to meet standards for reliability and reproducibility
- -inhaled and exhaled flow/volume measured via pneumotach and numerical and graphical printouts generated
- -bronchodilator may be given by aerosol or MDI if warranted and the testing is repeated to assess the effectiveness of the treatment



... on the day of testing


OBSTRUCTIVE LUNG DISEASE

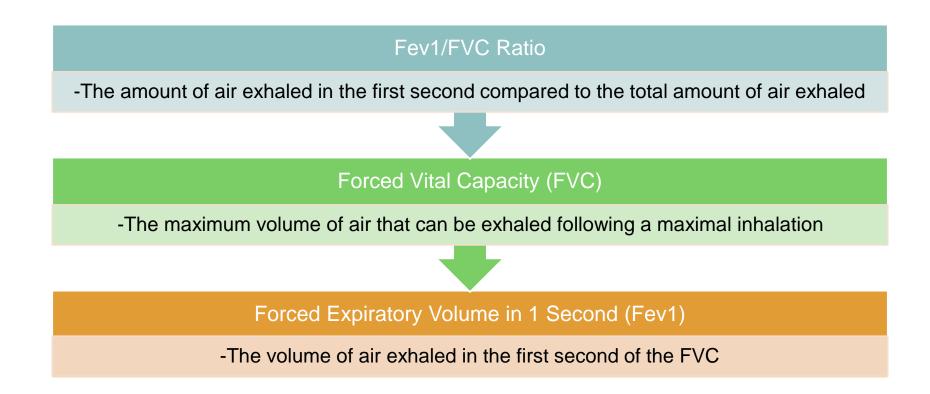

- Decreased airflow
- Normal or increased air volume
- Chronic Obstructive Pulmonary Disease
 - -Emphysema
 - -Chronic Bronchitis
 - -Asthma
 - -Bronchiectasis
 - -Cystic fibrosis

RESTRICTIVE LUNG DISEASE

- Normal airflow
- Decreased air volume
- "PAINT" mnemonic

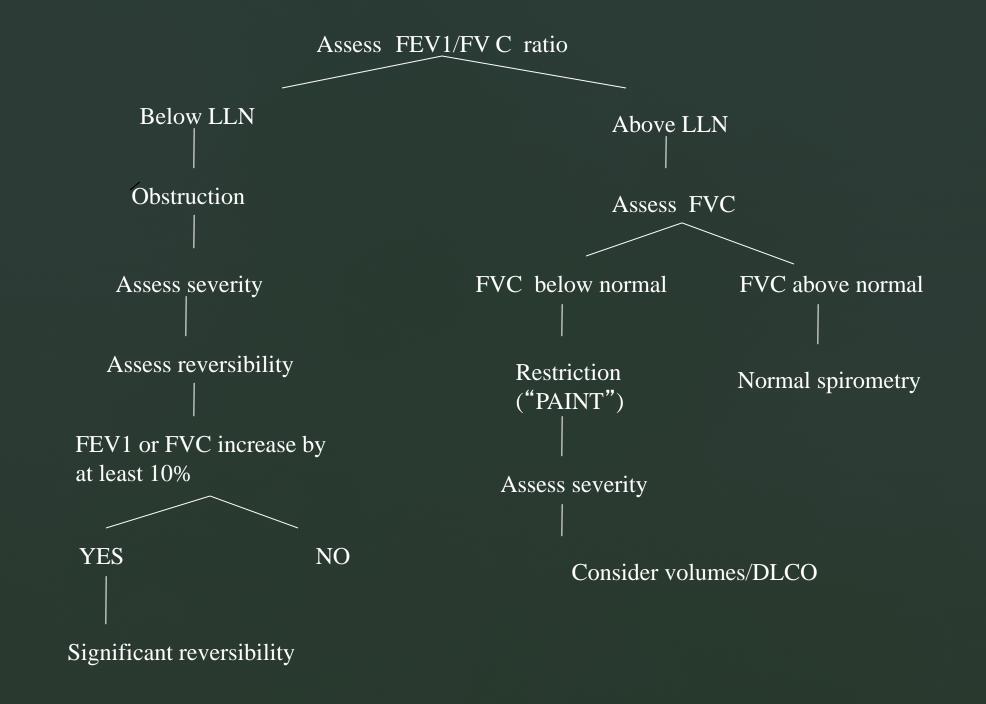
RESTRICTIVE LUNG DISEASE "PAINT"

- **P**leural-pleural effusion/mass/thickening
- Alveolar-pulmonary edema, pneumonia, cancer
- Interstitial-pulmonary fibrosis, sarcoidosis, silicosis pneumoconiosis etc.
- Neuromuscular-myasthenia gravis, ALS, Guillain-Barre, diaphragmatic paralysis
- Thoracic Cage-kyphoscoliosis, obesity


FULL SPIROMETRY YIKES !!

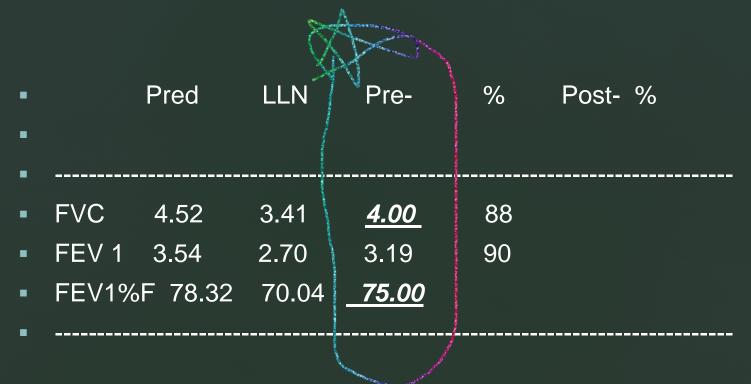
•	Pred	LLN	Pre-	%	Post-	%	% chg
FVC	3.34	2.59	1.86	55	1.83	55	-1
FEV 1	2.44	1.81	0.75	31	0.73	30	-3
FEV1%F	73.81	64.13	40.36	55	39.72	54	-2
FEV 3	3.18	2.16	1.14	36	1.13	36	0
FEV3%E	92.05	87.41	61.22	67	61.71	67	1
FEV6			1.47		1.45		-1
PEF	6.63	4.27	2.62	40	2.70	41	3
MEF 50	2.88	1.25	0.19	6	0.22	8	19
FIF 50			3.14		3.17		1
F25/75	1.90	0.61	0.19	10	0.18	10	-3
FE%FIF ?	????′	?					
FET			13.75		14.64		6

FULL SPIROMETRY FOCUS ON THE MAIN 3


•	Pred	LLN	Pre-	%	Post-	%	% chg
<u>FVC</u>	3.34	2.59	1.86	55	1.83	55	-1
<u>FEV 1</u>	2.44	1.81	0.75	31	0.73	30	-3
<u>FEV1%F</u>	73.81	64.13	40.36	55	39.72	54	-2
FEV 3	3.18	2.16	1.14	36	1.13	36	0
FEV3%E	92.05	87.41	61.22	67	61.71	67	1
FEV6			1.47		1.45		-1
PEF	6.63	4.27	2.62	40	2.70	41	3
MEF 50	2.88	1.25	0.19	6	0.22	8	19
FIF 50			3.14		3.17		1
F25/75	1.90	0.61	0.19	10	0.18	10	-3
FE%FIF							
•FET			13.75		14.64		6

THE MAIN 3

AAH, THAT'S BETTER


SPIROMETRY

- Assess FEV1/FVC ratio
- Below LLN----this reveals obstruction (or below 70%-GOLD)
- Above LLN----this can be restrictive or normal (or above 70%-GOLD)
 - Assess FVC—if normal, spirometry is normal

---if below normal, spirometry is restrictive

SPIROMETRY

- FEV1/FVC ratio is 75% which is above the LLN 70.04
- Spirometry is either normal or restrictive
- FVC is 4.00 liters, which is above LLN 3.41 liters
- This is a normal spirometry

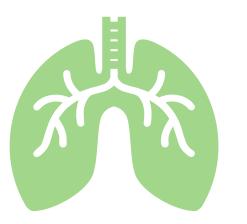
Spirometric Severity Classification (based on post-BD FEV₁)

Stage	For patients with $FEV_1/FVC < 0.70$:
1: Mild	FEV ₁ >80% predicted
2: Moderate	$50\% \leq \text{FEV}_1 < 80\% \text{ predicted}$
3: Severe	$30\% \leq \text{FEV}_1 < 50\%$ predicted
4: Very Severe	$FEV_1 < 30\%$ predicted

Global initiative for chronic obstructive lung disease: www.goldcopd.com

SPIROMETRY

•		Pred	LLN	Pre-	%	Post-	%	%chg
•								
•								
•	FVC	4.52	3.41	3.59	79	3.76	83	4
•	FEV 1	3.54	2.70	<u>1.18</u>	<u>33</u>	1.18	33	0
•	FEV1%F	78.32	70.04	<u>32.84</u>		31.51		
-								


- FEV1/FVC ratio is 32.84% which is below LLN 70.04%
- Spirometry is obstructive
- FEV1 is 1.18 liters which is 33% of predicted
- Spirometry is severe obstruction
- FEV1 showed no change and FVC improved 4%
- There is no significant reversibility

SPIROMETRY

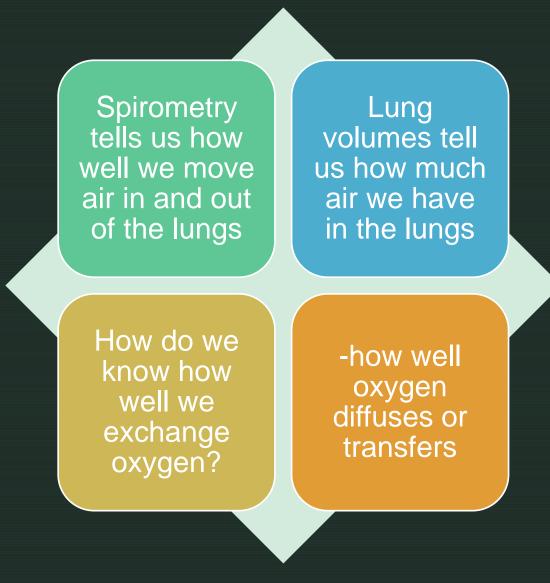
•		Pred	LLN	Pre-	%
•					
•					
•	FVC	4.52	3.41	<u>2.60</u>	<u>60</u>
•	FEV 1	3.54	2.70	2.10	60
•	FEV1%F	78.32	70.04	<u>80.00</u>	

- FEV1/FVC ratio 80% is above LLN 70.04%
- Spirometry is either normal or restrictive
- FVC is 2.60 liters, below LLN 3.41 liters
- Spirometry is restrictive

SEVERITY of RESTRICTION

- Total Lung Capacity (TLC) (Normal range: 80 120% of predicted)
- TLC > 120 = Hyperinflation
 - TLC < 80% = Restrictive disease (ATS criteria for severity):
- 70-80 % predicted: mild
 - 60-70% predicted: moderate
 - 50-60% predicted: moderately severe
- < 50% predicted: severe</p>
- Step 5: RV/TLC ratio (Normal range: < 35% or < predicted)
 RV/TLC > 35% or > predicted indicates Air trapping

OBSTRUCTION vs. RESTRICTION


Obstruction

- decreased airflow
 (reduced FEV1/FVC)
- normal/increased lung volume
- normal/decreased DLCO

Restriction

- normal airflow
 (normal FEV1/FVC)
- decreased lung volume
- normal or decreased DLCO

DIFFUSION CAPACITY OF CARBON MONOXIDE

DECREASED DLCO

Emphysema- destroyed alveoli

Fibrosis-scarring of alveoli and interstitium

Pulmonary vascular disease

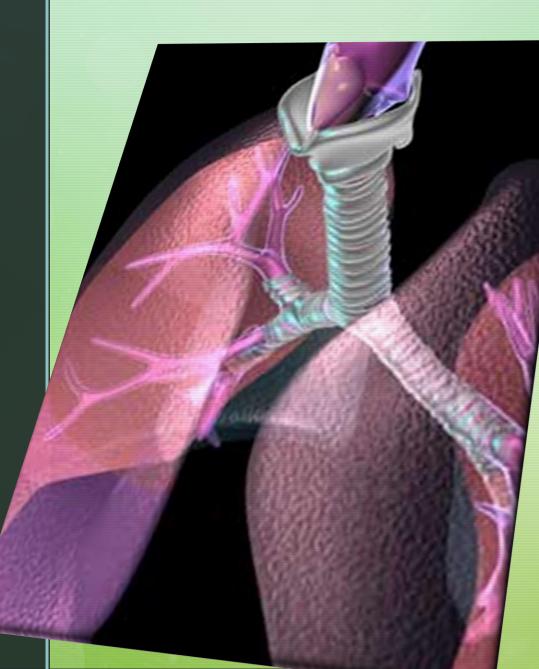
Anemia


NAME THAT TUNE.... I mean interpret this PFT

•		Pred	LLN	Pre-	%	Post-	%	%chg
•								
•								
•	FVC 5	4.52	3.41	4.00	88	4.20		92
•	FEV 1 6	3.54	2.70	1.60	45	1.70		48
•	FEV1%F	78.32	70.04	40.00		41.00		

PULMONARY FUNCTION

		Pred	LLN	Pre-	%	Post-	%	%chg
•								
•								
•	FVC	4.52	3.41	4.00	88	4.20	92	5
•	FEV 1	3.54	2.70	1.60	45	1.70	48	6
•	FEV1%F	78.32	70.04	40.00		41.00		


- 1. Severe obstructive disease with no significant BD response
- 2. emphysema/COPD
 - chronic bronchitis
 - chronic asthma
 - bronchiectasis
 - sarcoidosis possible

Asthma & COPD

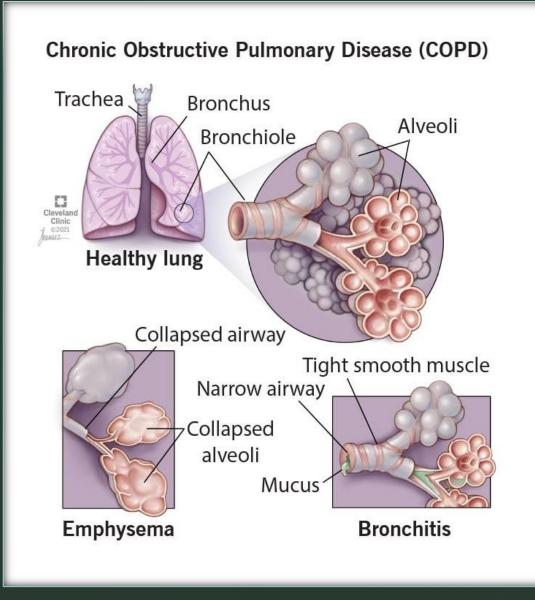
Asthma and COPD are important and common chronic conditions, seen by primary care

> 50 million affected/underdiagnosed

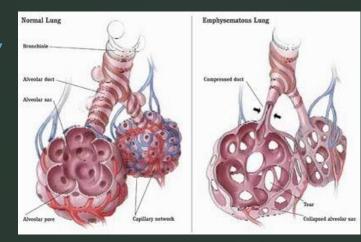
Asthma and COPD

Asthma Sensitizing agent COPD Noxious agent

Asthmatic airway inflammation CD4+ T lymphocytes Eosinophils COPD airway inflammation CD8+ T lymphocytes Macrophages Neutrophils

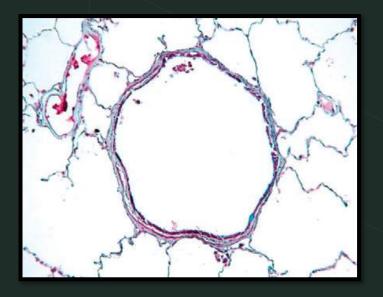


Reversible Airflow Limitation


Irreversible

COPD

COPD


A common preventable and treatable disease, characterized by *persistent airflow limitation* that is usually progressive and associated with an *enhanced chronic inflammatory response* in the airways and the lung to noxious particles or gases.

Exacerbations and comorbidities contribute to the overall severity in individual patients.

Global initiative for chronic obstructive lung disease 2019: www.goldcopd.com

Airway features in a healthy individual and in patient with COPD

Normal Airway

COPD: Narrowed airways

infiltration of inflammatory cells, mucosal hyperplasia and deposition of connective tissue in peribronchiolar space

Decramer Lancet 379: 2012

Symptoms related to airway disease and loss of alveolar spaces

- Shortness of breath with activity
- Frequent cough
- Cough with mucus (phlegm)
- Limiting activity due to shortness of breath
- Frequent colds/nose/throat infections
- Limiting activities due to shortness of breath or tiredness.

Diagnosis of COPD

Dyspnea, chronic cough or sputum, risk factors or family history of COPD

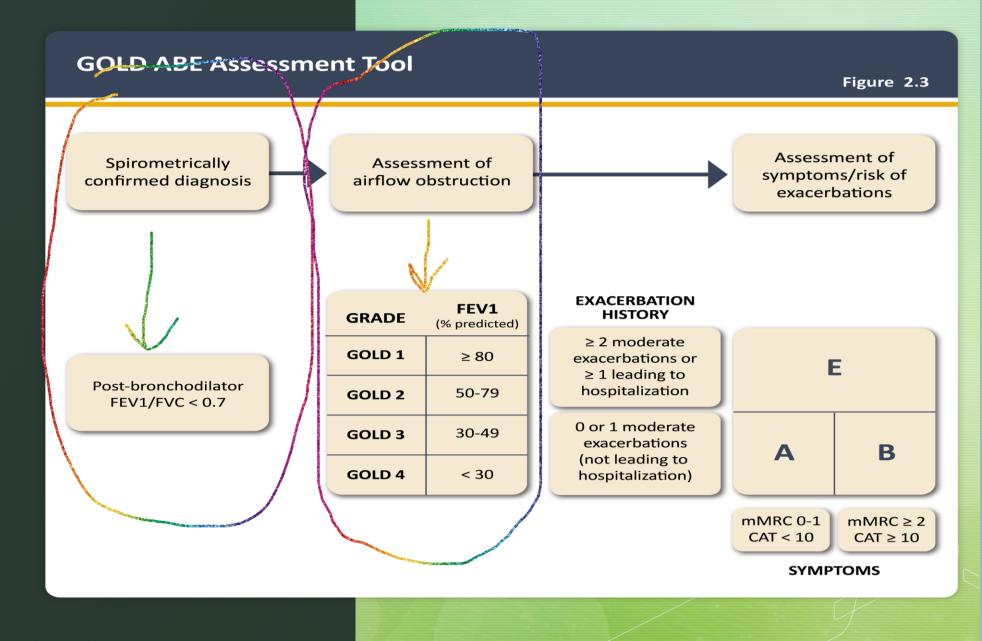
SPIROMETRY is required to make the diagnosis Post bronchodilator FEV_1/FVC ratio < 0.70 or < LLN Irreversible or partially reversible airflow obstruction

CXR not useful to diagnose COPD, useful to rule out Exclude alternative explanation for obstructive lung disease

COPD

GOLD Guidelines: Composite Assessment

2) Severity of obstruction on SPIROMETRY



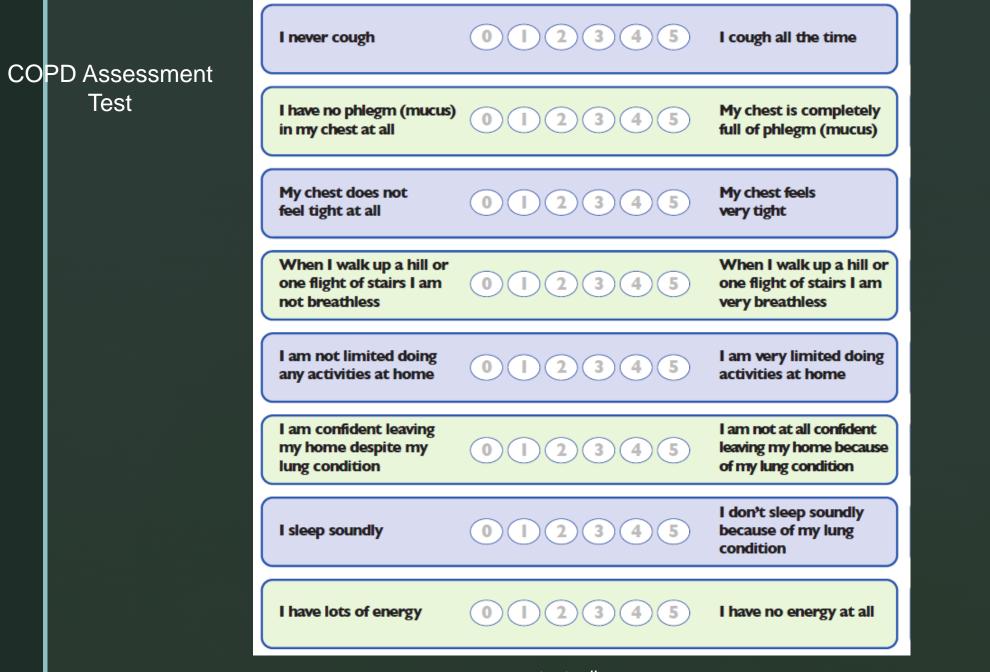
3) RISK of EXACERBATIONS

COMBINE to guide the management of COPD

Gold Diagnostics

		SCORE
I never cough	0 1 2 3 4 5 I cough all the time	
I have no phlegm (mucus) in my chest at all	0 1 2 3 4 5 My chest is completely full of phlegm (mucus)	
My chest does not feel tight at all	0 1 2 3 4 5 My cheef feels very tight	
When I walk up a hill or one flight of stairs I am not breathless	0 1 2 3 4 5 When I walk up a hill or one flight of stairs I am very breathless	
I am not limited doing any activities at home	0 1 2 3 4 5 I am very limited doing activities at home	
I am confident leaving my home despite my lung condition	0 1 2 3 4 5 lam per at all confident leaving my frome because of my lung condition.	
I sleep soundly	0 1 2 3 4 5 I don't sleep soundly because of my lung condition	
I have lots of energy	0 1 2 3 4 5 I have no energy at all	
	TOTAL SCORE	

COPD - Symptoms


mMRC Breathlessness Scale

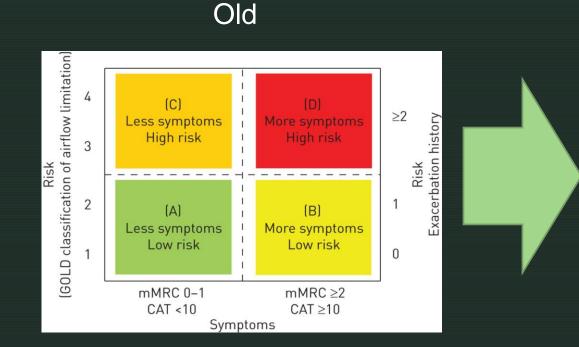
Grade	Description of Breathlessness
0	I only get breathless with strenuous exercise
1	I get short of breath when hurrying on level ground or walking up a slight hill
2	On level ground, I walk slower than people of the same age because of breathlessness, or have to stop for breath when walking at my own pace
3	I stop for breath after walking about 100 yards or after a few minutes on level ground
4	I am too breathless to leave the house or I am breathless when dressing

Spirometric Severity Classification (based on post-BD FEV₁)

Stage	For patients with $FEV_1/FVC < 0.70$:
1: Mild	FEV ₁ >80% predicted
2: Moderate	$50\% \leq \text{FEV}_1 < 80\% \text{ predicted}$
3: Severe	$30\% \leq \text{FEV}_1 < 50\%$ predicted
4: Very Severe	$FEV_1 < 30\%$ predicted

Global initiative for chronic obstructive lung disease: www.goldcopd.com

catestonline.org


Symptoms- Modified Medical Research Council (mMRC)

PLEASE TICK IN THE BOX THAT APPLIES	TO YOU
(ONE BOX ONLY) mMRC Grade 0. I only get breathless with strenuous exercise.	
mMRC Grade 1. I get short of breath when hurrying on the level or walking up a slight hill.	
mMRC Grade 2. I walk slower than people of the same age on the level because of breathlessness, or I have to stop for breath when walking on my own pace on the level.	

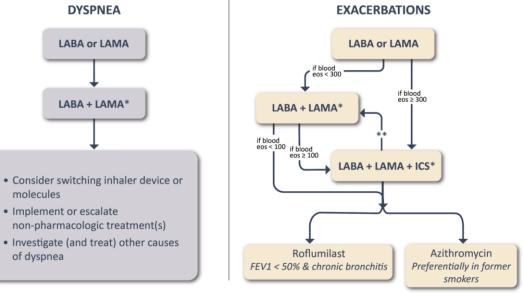
mMRC Grade 3. I stop for breath after walking about 100 meters or after a few minutes on the level.

mMRC Grade 4. I am too breathless to leave the house or I am breathless when dressing or undressing.

2023 – Highlight importance of exacerbations

*single inhaler therapy may be more convenient and effective than multiple inhalers

Treatment COPD


Treatment COPD

Follow-up Pharmacological Treatment

Figure 4.4

IF RESPONSE TO INITIAL TREATMENT IS APPROPRIATE, MAINTAIN IT.

- IF NOT: Check adherence, inhaler technique and possible interfering comorbidities
 - Consider the predominant treatable trait to target (dyspnea or exacerbations)
 - Use exacerbation pathway if both exacerbations and dyspnea need to be targeted
 - Place patient in box corresponding to current treatment & follow indications
 - Assess response, adjust and review
 - These recommendations do not depend on the ABE assessment at diagnosis

*Single inhaler therapy may be more convenient and effective than multiple inhalers

**Consider de-escalation of ICS if pneumonia or other considerable side-effects. In case of blood eos \geq 300 cells/µl de-escalation is more likely to be associated with the development of exacerbations

- Many patients will be on LAMA/LABA
- The minority of patients will be on LAMA/LABA/ICS
- Few patients will be on LABA/ICS
- Blood eosinophils are an essential biomarker for COPD

Treatment COPD Exacerbations

 Moderate exacerbation = need of oral steroids

 Severe exacerbation = hospitalized (due to respiratory failure i.e. need oxygen vs.
 BiPAP)

Factors to Consider when Initiating ICS Treatment

Figure 3.1

Factors to consider when adding ICS to long-acting bronchodilators: (note the scenario is different when considering ICS withdrawal)

STRONGLY FAVORS USE	History of hospitalization(s) for exacerbations of COPD# ≥ 2 moderate exacerbations of COPD per year# Blood eosinophils ≥ 300 cells/μL History of, or concomitant asthma			
FAVORS USE	1 moderate exacerbation of COPD per year [#] Blood eosinophils 100 to < 300 cells/µL			
AGAINST USE	Repeated pneumonia events Blood eosinophils < 100 cells/μL History of mycobacterial infection			

"despite appropriate long-acting bronchodilator maintenance therapy (see Table 3.4 and Figure 4.3 for recommendations); *note that blood eosinophils should be seen as a continuum; quoted values represent approximate cut-points; eosinophil counts are likely to fluctuate.

Adapted from & reproduced with permission of the © ERS 2019: European Respiratory Journal 52 (6) 1801219; DOI: 10.1183/13993003.01219-2018 Published 13 December 2018

EXACERBATIONS

Smooth muscle dysfunction

- Bronchoconstriction
- Bronchial hyperactivity
- Hyperplasia/hypertrophy
- Inflammatory mediator release

Airway inflammation

- Mucosal edema
- Inflammatory cell activation
- Cellular proliferation
- Epithelial damage
- Basement membrane thickening

Managing Exacerbations

CAUSES/Risk Factors

Cough

Change in mucus

Difficulty coughing up mucus

SIGNS

Shortness of breath

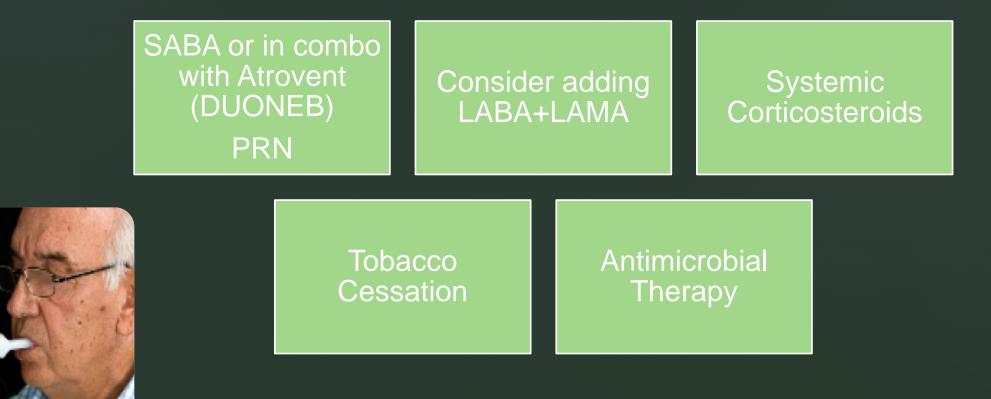
Wheezing

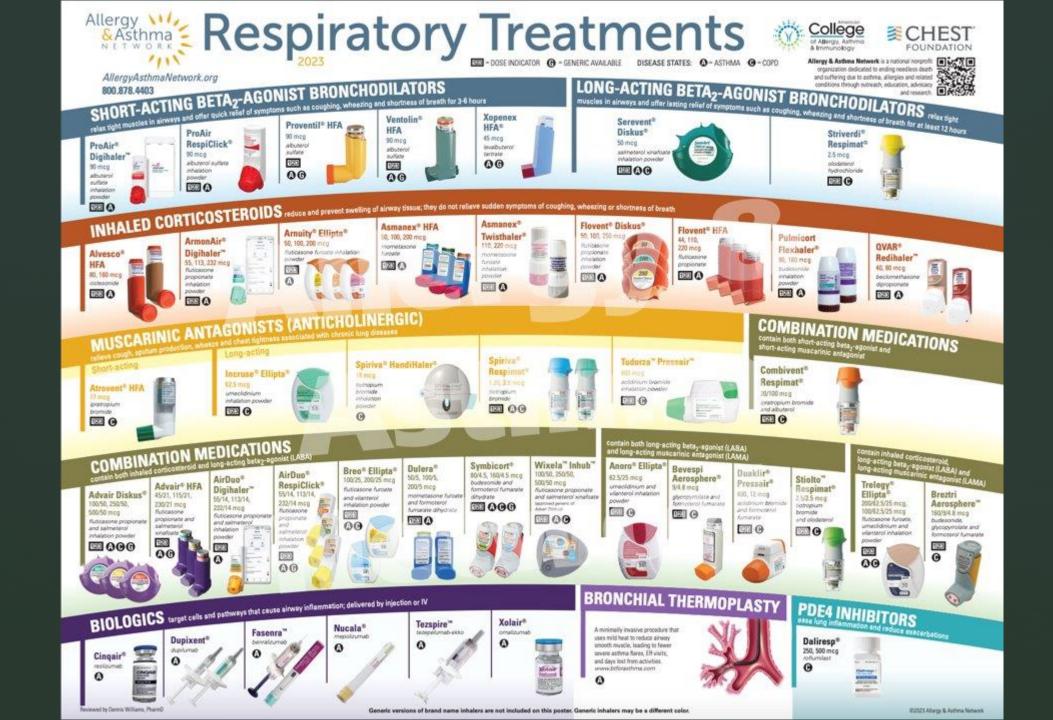
• 45% bacterial H flu, M catarrhalis, S pneumonia Lower BMI, Continued smoking

Air pollution, extremes in weather

Certain cancers

Prior exacerbations


Infections


• 50-80% viral

Heart failure, PE, arrhythmia, PTX

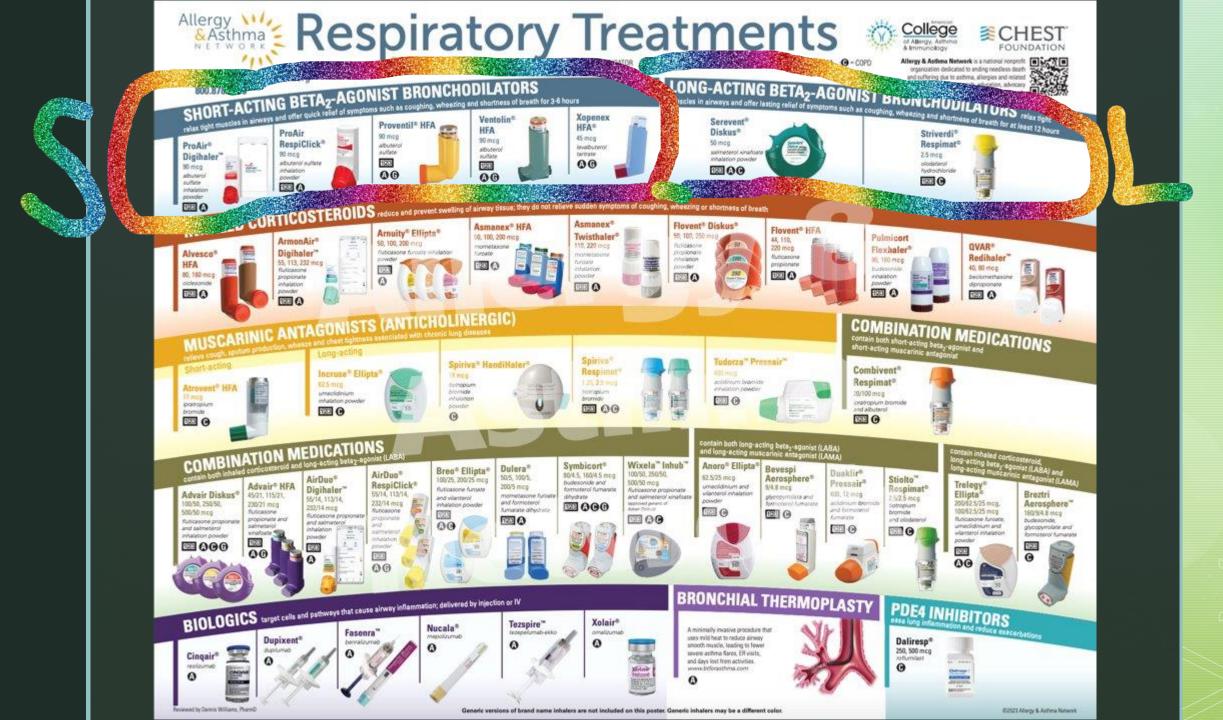
(Unknown in 1/3 of cases)

Treatment of COPD Exacerbation

INHALERS

Short Acting Bronchodilators (SABA)

"Relievers" treat bronchospasm, fast acting


- Albuterol (ProAir ®)
- Levalbuterol (Xopenex®)

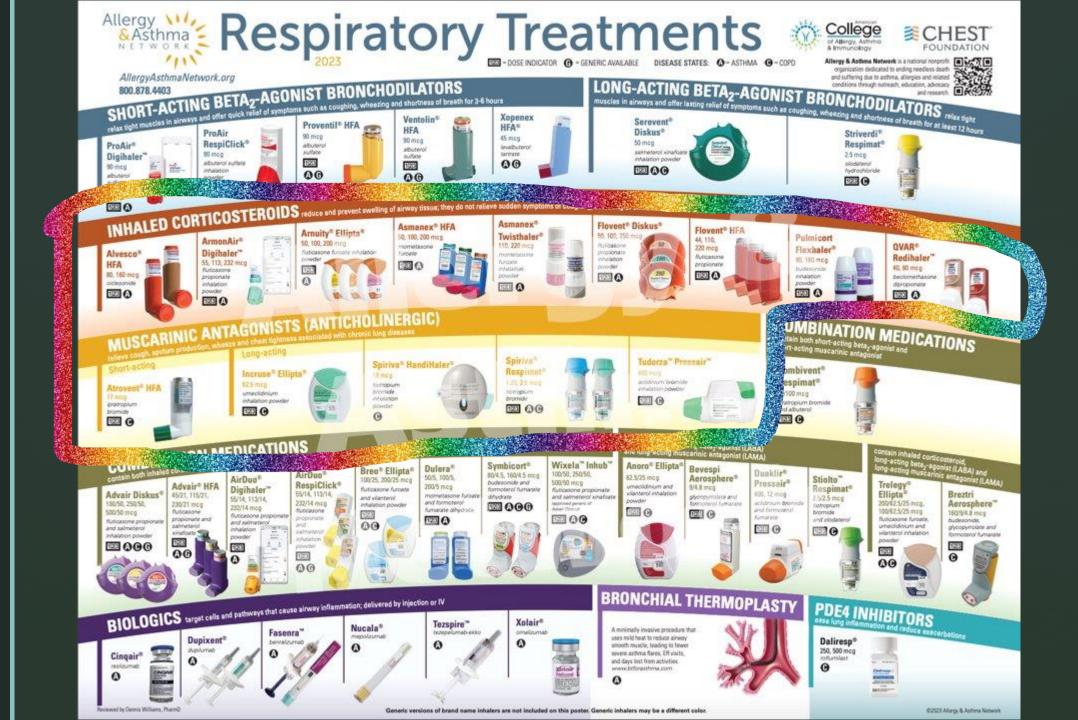
Long-acting bronchodilators (LABA)

Prevent development of bronchospasm

- Salmeterol (Serevent Diskus®)
- Formoterol (Foradil®)

INHALERS

Inhaled Corticosteroids


Long-acting muscarinic antagonists (LAMAS)

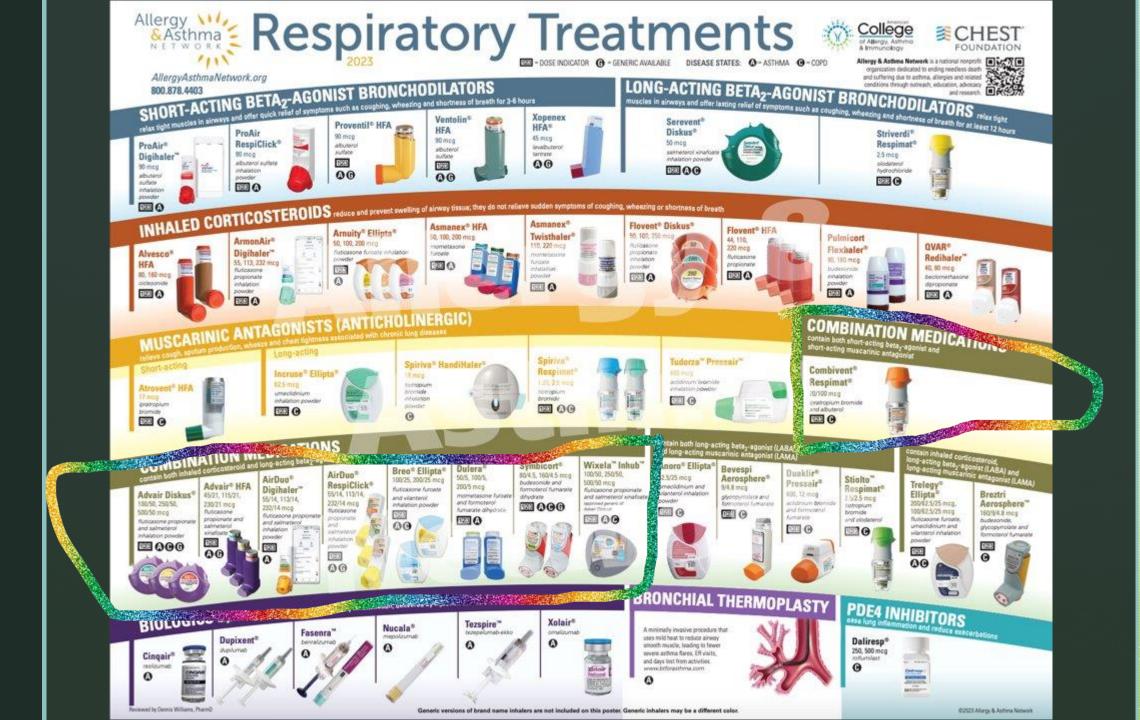
Inhibit production of inflammatory agents

- Budesonide (Pulmicort®)
- Fluticasone (Flovent®)

Long-acting bronchodilation, potentially anti-eosinophilic/antiinflammatory effect

 Tiotropium Bromide (Spiriva®)

COMBO INHALERS


ICS + LABA

 Advair Diskus® (Flovent +Salmeterol)

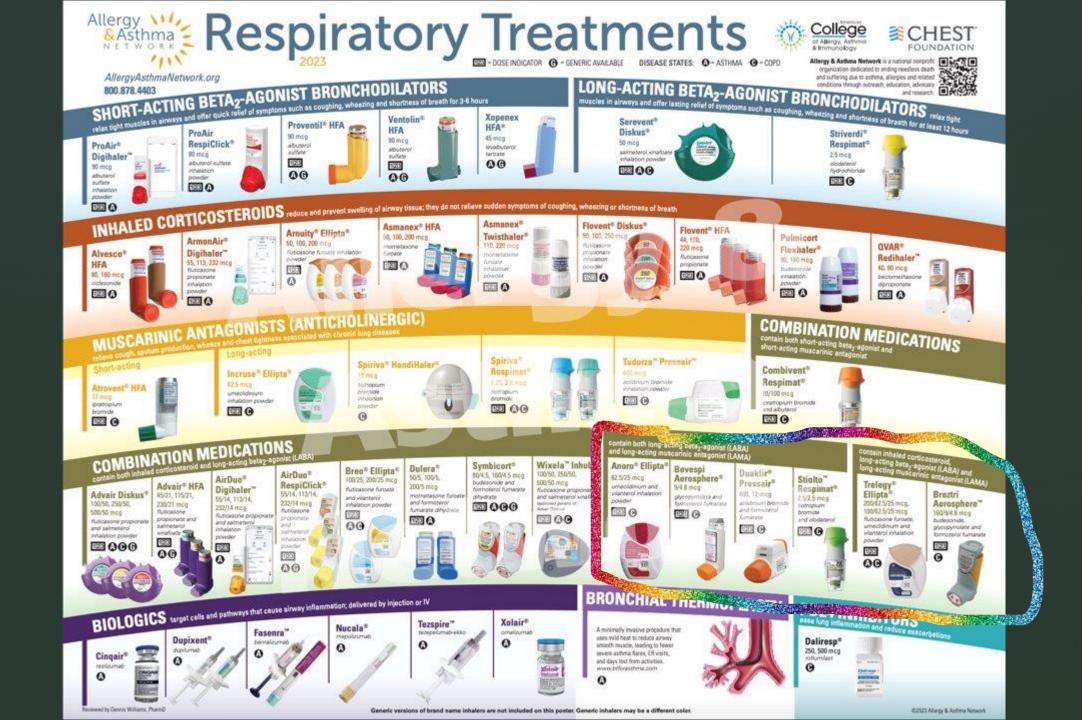
- Symbicort® (Pulmicort + Formoterol)
- Dulera: mometasoneformoterol

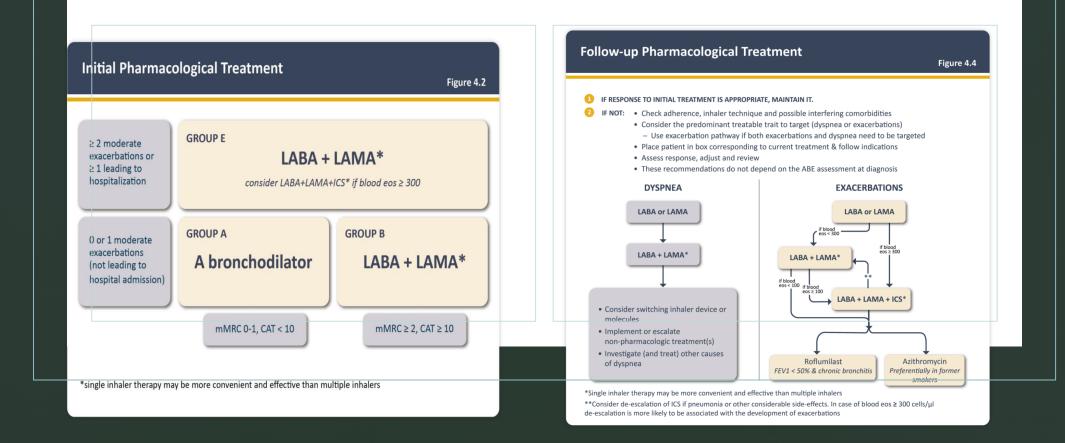
SAMA +SABA

- Combivent
- Duoneb

COMBO INHALERS

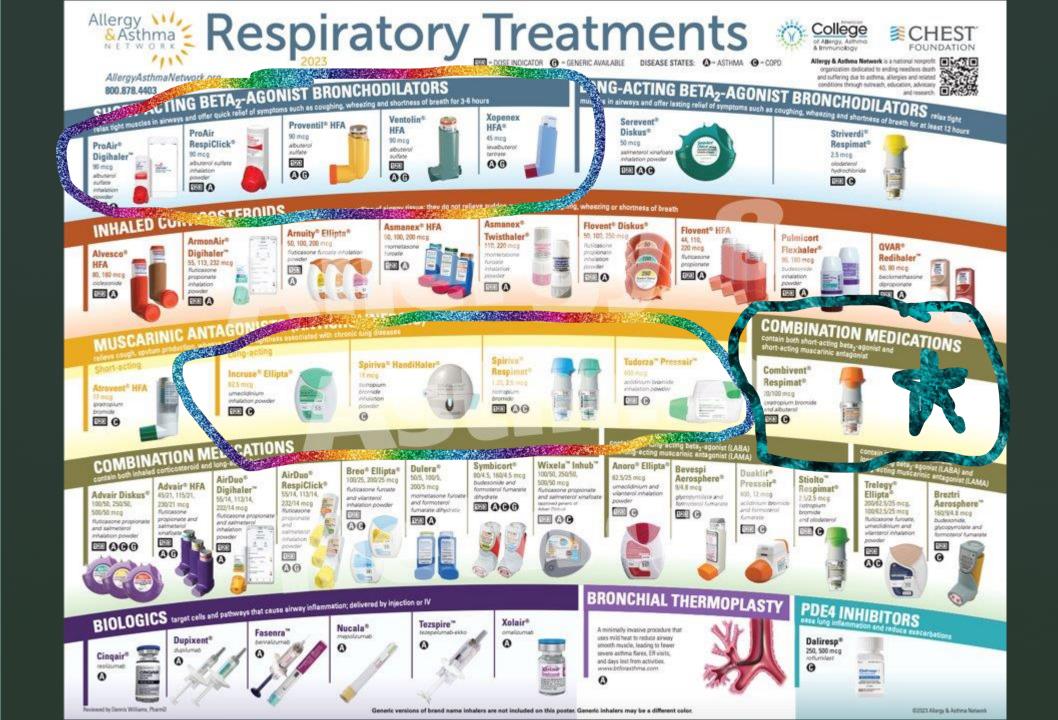
LAMA + LABA

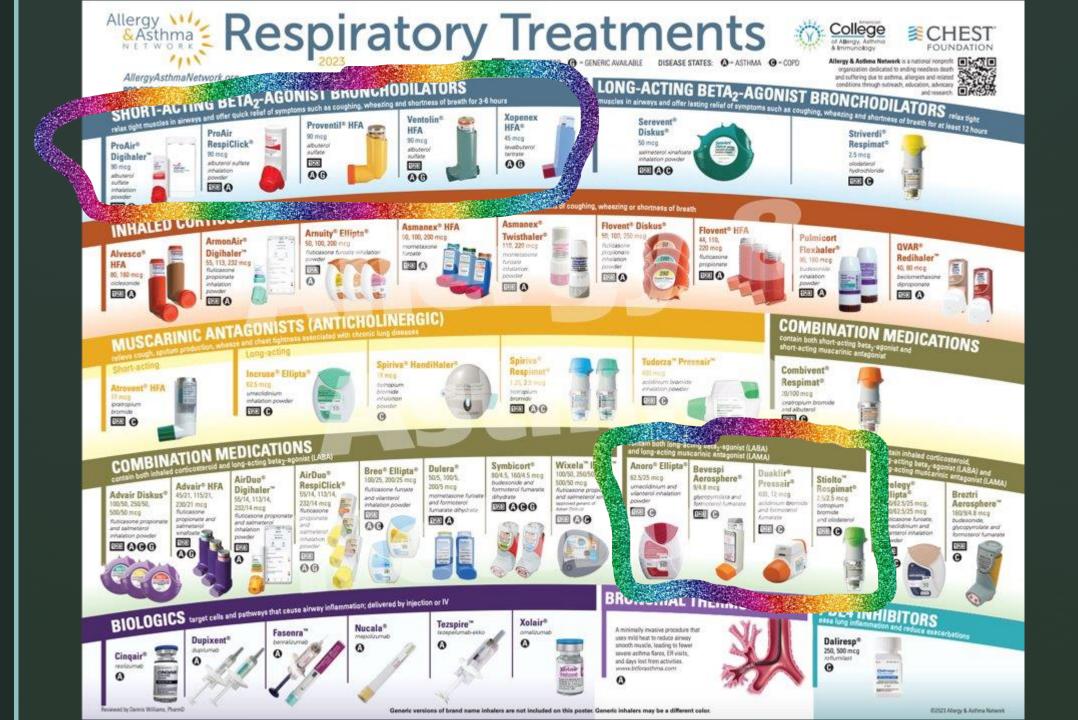

- Anoro Ellipta
- Stiolto Respimat
- Bevespi

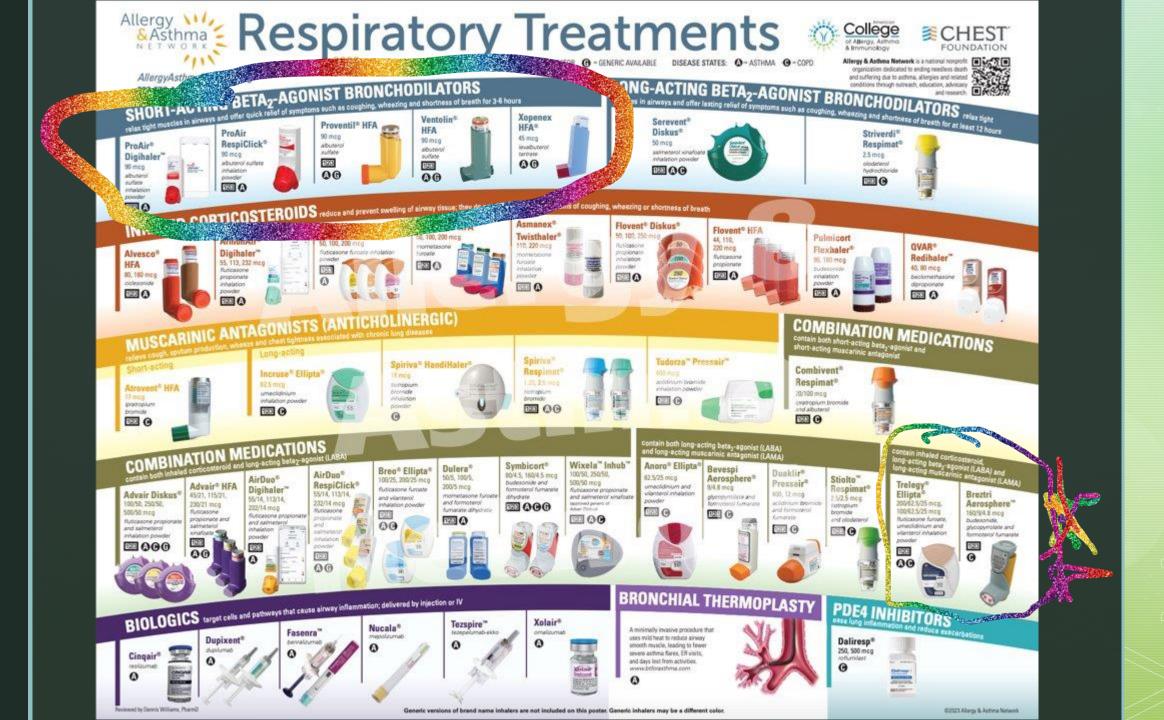

TRIPLE THERAPY

Trelegy


Breztri







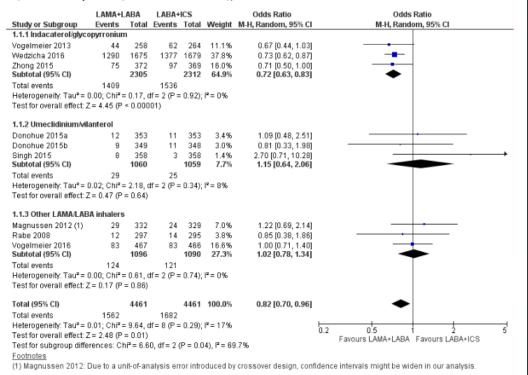
COPD TREATMENT

COPD- Triple Therapy - Dual Therapy = ICS Do we Need ICS?

Pros

Potential impact on exacerbations Biological plausibility for certain phenotypes Reduce airway inflammation Upregulate beta receptors Mild improvement in FEV₁ (initial sustained)

<u>Cons</u>


Skin thinning and easy bruising Oral thrush, and hoarseness Increased risk of pneumonia Osteoporosis Early onset diabetes . Cataracts Cost No effect on FEV₁ decline

LAMA-LABA vs. LABA - ICS

More Exacerbations

7

Figure 3. Forest plot of comparison: 1 Long-acting muscarinic antagonist (LAMA) plus long-acting beta-agonist (LABA) versus LABA plus ICS (inhaled corticosteroid), outcome: 1.1 Exacerbation.

Likely More Adverse Effects

Figure 4. Forest plot of comparison: 1 Long-acting muscarinic antagonist (LAMA) plus long-acting beta-agonist (LABA) versus LABA plus ICS (inhaled corticosteroid), outcome: 1.2 Serious adverse events.

	LAMA+L	ABA	LABA+	ICS		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.2.1 Indacaterol/glyco	pyrroniun	1					
Vogelmeier 2013	13	258	14	264	3.4%	0.95 [0.44, 2.06]	
Wedzicha 2016	308	1678	334	1680	68.8%	0.91 [0.76, 1.08]	
Zhong 2015	20	372	35	369	6.3%	0.54 [0.31, 0.96]	
Subtotal (95% CI)		2308		2313	78.5%	0.82 [0.61, 1.10]	-
Total events	341		383				
Heterogeneity: Tau ² = (f= 2 (P =	: 0.23);	² = 31%		
Test for overall effect 2	C= 1.31 (P	= 0.19)					
1.2.2 Umeclidinium/vil							
Donohue 2015a	6	353	10	353	1.9%	0.59 [0.21, 1.65]	
Donohue 2015b	11	349	13	348	3.1%	0.84 [0.37, 1.90]	
Singh 2015	7	358	2	358	0.8%	3.55 [0.73, 17.21]	
Subtotal (95% CI)		1060		1059	5.8%	1.00 [0.43, 2.31]	
Total events	24		25				
Heterogeneity: Tau ² = 0			If= 2 (P=	: 0.17);	I² = 44%		
Test for overall effect: Z	C = 0.01 (P	= 1.00)					
1.2.3 Other LAMA/LAB	A inhalers						
Beeh 2016	13	436	13	431	3.3%	0.99 [0.45, 2.16]	
Magnussen 2012 (1)	12	332	8	329	2.5%	1.50 [0.61, 3.73]	
Rabe 2008	6	297	6	295	1.6%	0.99 [0.32, 3.12]	
Vogelmeier 2016	35	467	33	466	8.4%	1.06 [0.65, 1.74]	
Subtotal (95% CI)		1532		1521	15.7%	1.10 [0.77, 1.57]	-
Total events	66		60				
Heterogeneity: Tau ² = (0.00; Chi ² =	0.58, 0	f= 3 (P =	0.90);	I ² = 0%		
Test for overall effect 2							
Total (95% CI)		4900		4893	100.0%	0.91 [0.79, 1.05]	◆
Total events	431		468				
Heterogeneity: Tau ² = (f= 9 (P =	0.50);	² = 0%		0.2 0.5 1 2 5
Test for overall effect 2							Favours LAMA+LABA Favours LABA+ICS
Test for subgroup diffe	rences: Ch	i ² = 1.5	4, df = 2 ((P = 0.4	6), I ² = 09	6	
Footnotes							

(1) Magnussen 2012: Due to a unit-of-analysis error introduced by crossover design, confidence intervals might be widen in our analysis.

2017 - DOI: 10.1002/14651858.CD012066.pub2

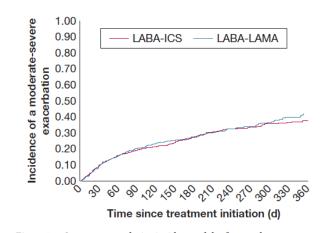


Figure 2 – One-year cumulative incidence of the first moderate or severe COPD exacerbation, comparing current treatment with LABA-LAMA and LABA-ICS, estimated using the Kaplan-Meier method. See Figure 1 legend for expansion of abbreviations.

TABLE 3] Crude and Adjusted Hazard Ratios of Severe Pneumonia Comparing LABA-LAMA Initiati	on With
LABA-ICS Initiation in Patients With COPD in the First Year After Treatment Initiation, F	rom the
As-Treated Analysis	

Treatment Exposure	No. of Patients	No. of Events	Person-Years	Rate per 100 per Year	Crude ^a HR	Adjusted ^b HR (95% CI)
As-treated exposure						
LABA-LAMA	1,977	32	629	5.1	0.66	0.66 (0.41-1.05)
LABA-ICS	1,977	41	535	7.7	1.00	1.00 (Reference)
On-treatment exposure ^c						
LABA-LAMA	1,977	49	907	5.4	0.65	0.66 (0.48-0.92)
LABA-ICS	1,977	143	1,778	8.0	1.00	1.00 (Reference)

See Table 1 and 2 legends for expansion of abbreviations.

^aCrude, after matching on high-dimensional propensity scores and sex.

^bAfter matching on high-dimensional propensity scores and sex, adjusted further for the decile of propensity score.

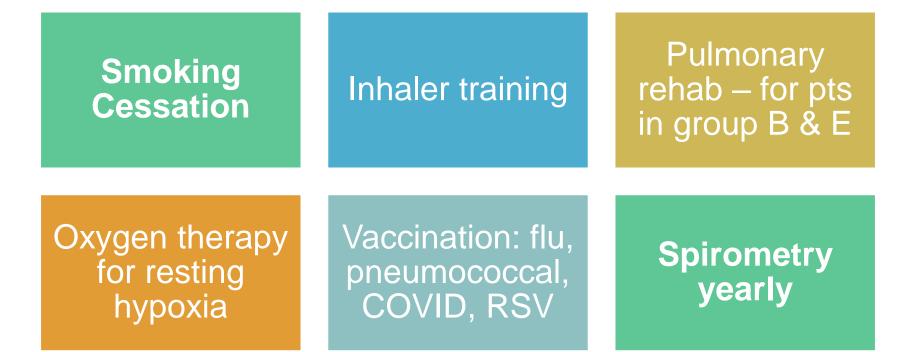
^cOn-treatment exposure based on analysis of current use during the entire 1-year follow-up, allowing patients to switch or add treatments.

DOI: 10.1016/j.chest.2019.03.005

Controllers:

- Inhaled steroids: Qvar, Arnuity, Asmanex, Flovent
- ICS/LABAs: Dulera, Breo, Advair, AirDuo, Symbicort, Wixela
- LAMA: Spiriva

Triple therapy approved for asthma: Trelegy (200 mg fluticasone dose)

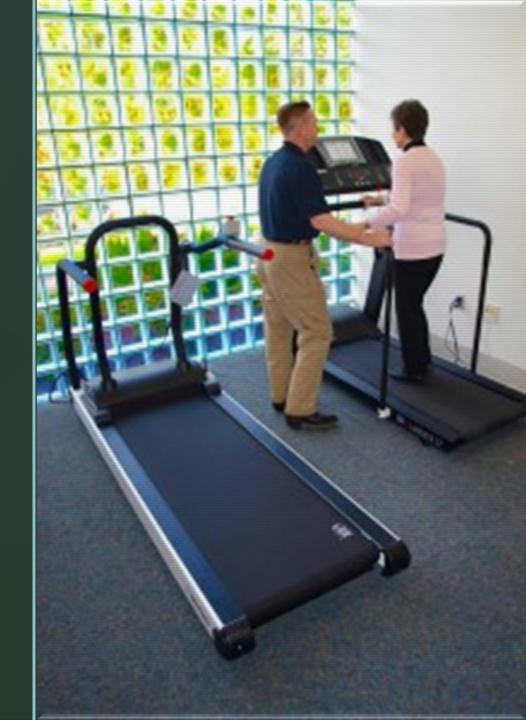

Relievers:

TRELEGY 30)

- Short acting beta2-agonist: Albuterol (brands are Proventil, ProAir, Ventolin); Levalbuterol (brand is Xopenex)
- Short acting anti-muscarinic: Ipratropium bromide- Atrovent
- Combination SABA/SAMA Duoneb solution for nebulizer, Combivent inhaler

Non – Pharmacologic treatment

Exercise Training has benefits: increase efficiency, less sedentary


Pulmonary Rehabilitation aims to

- 1) Target extra-pulmonary effects of lung disease
- 2) Ensure patients learn optimally manage disease
- 3) Provide patient with skills to lead healthy life

Physical Activity

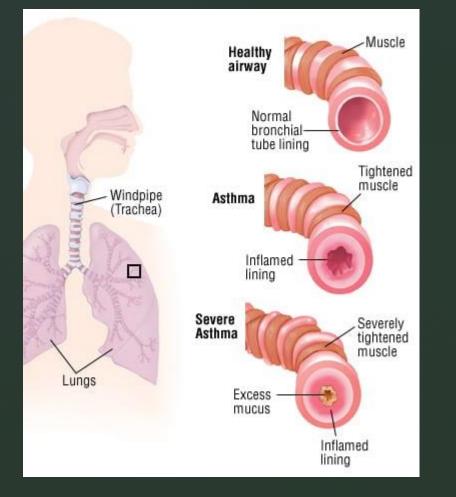
Nutrition

- Emotions/psychological well-being
- ***effective after exacerbations

Lung Cancer screening

50-80 year old >20 pack year history

quit <15 years ago


ASTHMA

DARTH VADER

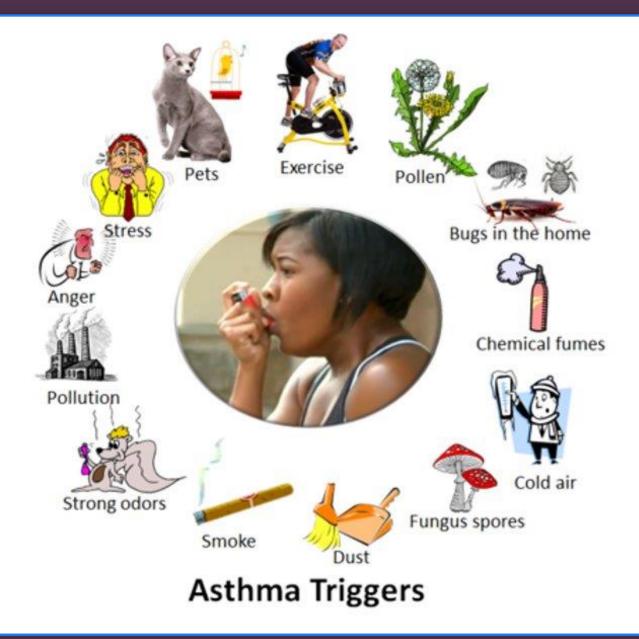
Making asthma scary since '77

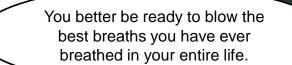
URGER.COM 👼 🗧 🍩

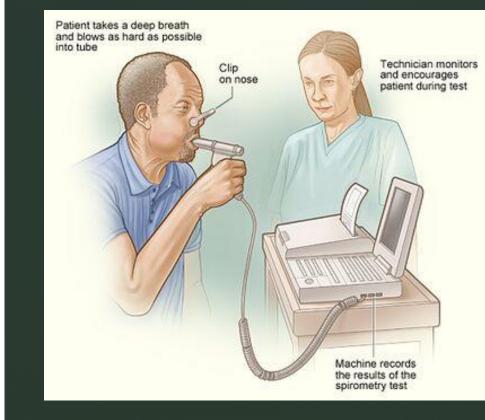
Chronic airway inflammation Asthma

What happens to your lungs when you have asthma

LUNG WITHOUT ASTHMA


- Muscles relaxed
- Normal airways
- Normal amount of mucus



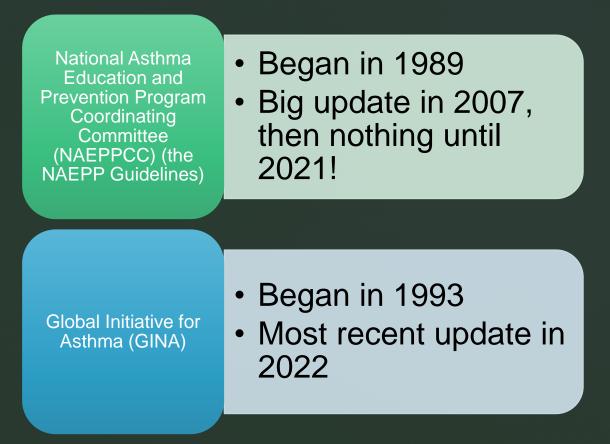

LUNG WITH ASTHMA

- Muscles tighten
- Airways swell
- Mucus clogs the airways
- Lungs have difficulty moving air in and out

aafa.org

Variable flow obstruction seen in asthma

This can be measured by spirometry with a baseline measurement and testing after bronchodilator is administered


Significant if-

FEV, increases >10% and at least 200 mL

		Meas	LLN	Pred	ULN	ፄ	Post	ዲ	%Chg
FVC	L	3.79	2.92	3.65	4.41	103.6	3.78	103.4	-0.2
FEV1	L	2.32	2.47	3.08	3.67	75.3	2.87	93.1	23.7
FEV1/FVC	8	61	73	85	94	72.3	76	89.6	23.9

Guidelines

Diagnosing Asthma

CLINICAL SYNDROME!

(can be confirmed/supported with testing)

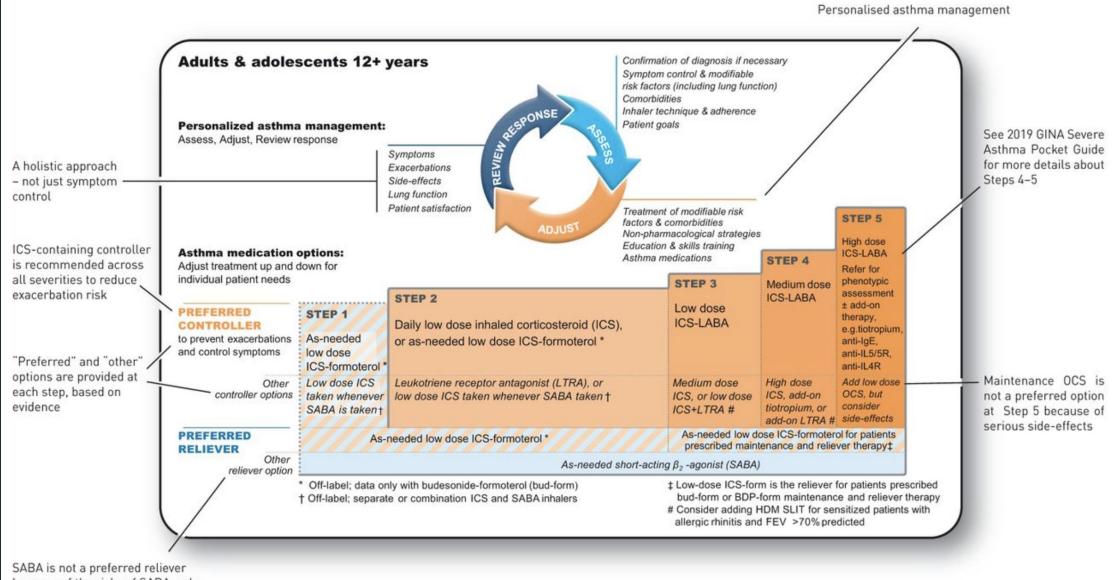
Spirometry - positive for asthma if airway obstruction is found with reversibility, and significant bronchodilator response

Pulmonary function testing

 \bigcirc

Bronchial Provocation Testing – Methacholine Challenge or Mannitol Challenge

FeNO – Fractionated exhaled nitric oxide - >50 ppb often seen in poorly controlled asthma.



Labs

Elevated IgE peripheral eosinophilia

Components of Severity		Classification of Asthma Severity ≥12 years of age					
		Intermittent	Persistent				
			Mild	Moderate	Severe		
Impairment Normal FEV ₁ /FVC: 8–19 yr 85% 20 –39 yr 80% 40 –59 yr 75% 60 –80 yr 70%	Symptoms	≤2 days/week	>2 days/week but not daily	Daily	Throughout the day		
	Nighttime awakenings	≤2x/month	3-4x/month	>1x/week but not nightly	Often 7x/week		
	Short-acting beta ₂ -agonist use for symptom control (not prevention of EIB)	≤2 days/week	>2 days/week but not daily, and not more than 1x on any day	Daily	Several times per day		
	Interference with normal activity	None	Minor limitation	Some limitation	Extremely limited		
		Normal FEV ₁ between exacerbations					
	Lung function	• FEV, >80% predicted	• FEV, >80% predicted	• FEV ₁ >60% but <80% predicted	 FEV, <60% predicted 		
		FEV ₁ /FVC normal	FEV ₁ /FVC normal	FEV ₁ /FVC reduced 5%	 FEV₁/FVC reduced >5% 		
Risk Exacerbations requiring oral systemic corticosteroids		0−1/year (see note) ≥2/year (see note)					
		Consider severity and interval since last exacerbation. Frequency and severity may fluctuate over time for patients in any severity category. Relative annual risk of exacerbations may be related to FEV ₁ .					
Recommended Step for Initiating Treatment (See figure 4–5 for treatment steps.)				Step 3	Step 4 or 5		
		Step 1	Step 2	and consider short course of oral systemic corticosteroids			
		In 2–6 weeks, evaluate level of asthma control that is achieved and adjust therapy accordingly.					
ource: NAEPP Asthma	Guidelines, 2018						

	Intermittent Asthma	Management of Persistent Asthma in Individuals Ages 12+ Years						
Treatment	STEP 1	STEP 2	STEP 3	STEP 4	STEP 5	STEP 6		
Preferred	PRN SABA	Daily low-dose ICS and PRN SABA or PRN concomitant ICS and SABA •	Daily and PRN combination low-dose ICS- formoterol A	Daily and PRN combination medium-dose ICS-formoterol A	Daily medium-high dose ICS-LABA + LAMA and PRN SABA▲	Daily high-dose ICS-LABA + oral systemic corticosteroids + PRN SABA		
Alternative		Daily LTRA* and PRN SABA or Cromolyn,* or Nedocromil,* or Zileuton,* or Theophylline,* and PRN SABA	Daily medium- dose ICS and PRN SABA or Daily low-dose ICS-LABA, or daily low-dose ICS + LAMA, * or daily low-dose ICS + LTRA,* and PRN SABA or Daily low-dose ICS + Theophylline* or Zileuton,* and PRN SABA	Daily medium- dose ICS-LABA or daily medium-dose ICS + LAMA, and PRN SABA * or Daily medium- dose ICS + LTRA,* or daily medium- dose ICS + Theophylline,* or daily medium-dose ICS + Zileuton,* and PRN SABA	Daily medium-high dose ICS-LABA or daily high-dose ICS + LTRA,* and PRN SABA			
		immunotherapy as an in individuals ≥ 5 years	i ly recommend the use o adjunct treatment to star of age whose asthma is I maintenance phases of	ndard pharmacotherapy controlled at the	Consider adding Asthma Biologics (e.g., anti-IgE, anti-IL5, anti-IL5R, anti-IL4/IL13)**			

because of the risks of SABA-only treatment, including if adherence is poor

Medications- Step 1

NAEPP Guidelines: PRN SABA

Brands

Proventil, Ventolin, ProAir (all albuterol)

Xopenex (levalbuterol)

 GINA Guidelines: PRN low-dose ICS/LABA (but only formoterol!) – budesonide/formoterol most studied, but other combination with formoterol is fine

Brands

Symbicort (budesonide/formoterol)

Dulera (mometasone/formoterol)

Perforomist (nebulized formoterol – can be combined with ICS)

Medications – Step 2

NAEPP

• Daily low dose ICS, and as needed SABA for quick relief therapy

OR

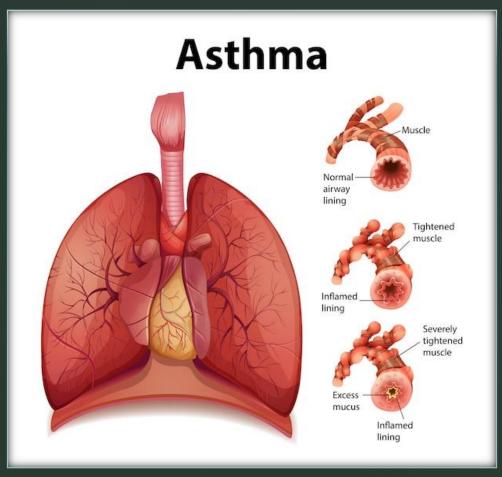
Intermittent as-needed SABA + an ICS use concomitantly (one after the other)

GINA

• Daily low- dose ICS

OR

As needed low-dose ICS/formoterol


Medication Step 3

NAEPP

 Daily and PRN low-dose ICS/LABA (Also called SMART (Single Maintenance and Reliever Therapy) – suitable for Steps 3 and 4.)

GINA

- Low-dose ICS/LABA, with PRN ICS/formoterol as rescue. (Essentially this is SMART therapy too! But leaves the daily inhaler up to you if you want to use another LABA type)
- Consider adding on leukotriene modifier (LTRA) – Singulair (montelukast), Accolate (zarfirlukast), Zyflo (Zileuton)

Leukotriene Modifiers

- Montelukast (Singulair) 10 mg once a day (PO)
- Zafirlukast (Accolate) 20 mg BID (PO)

Bronchoconstriction, vascular permeability, eosinophil recruitment, and chronic inflammation are mediated through the G protein-coupled activation of cysteinyl leukotriene receptors. SO – Leukotriene stimulate airway contraction, and inflammatory cascade ft. mucosal edema, mucous secretion

Montelukast and zafirlukast block cysteinyl leukotriene CysLT1 receptors, resulting in reduced eosinophilic recruitment to airway tissue.

Great for: Exercise-induced bronchospasm, asthma with allergic rhinitis, cold-exacerbated asthma, aspirin-exacerbated respiratory disease (AERD).

- Zileuton (Zyflo) 600 mg QID, or ER dosing 1200 mg BID

Works differently to other LTRAs, Specific 5-lipoxygenase inhibitor which inhibits leukotriene formation.

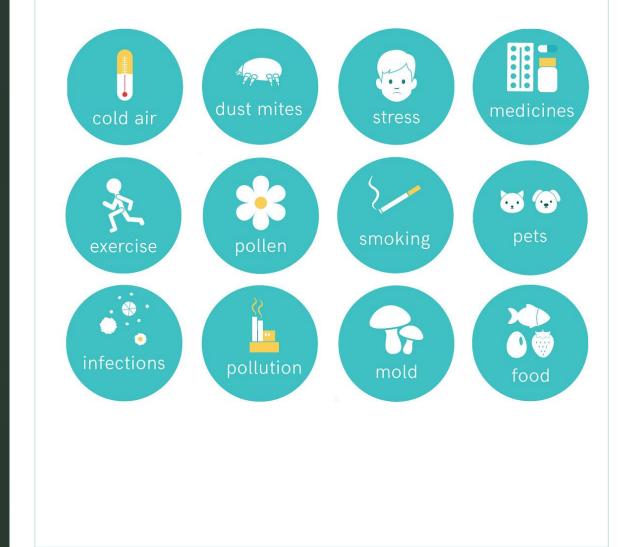
Medications - Step 4

NAEPP

- Daily and PRN medium-dose ICS/LABA (Also called SMART (Single Maintenance and Reliever Therapy) – suitable for Steps 3 and 4.)
- Add LTRA

GINA

- Medium-dose ICS/LABA, with PRN ICS/formoterol as rescue
- LTRA
- Consider use/addition of LAMA tiotropium (currently the only FDA approved LAMA for asthma in the US)


Medications – Step 5

NAEPP

- Daily medium to high-dose ICS/LABA
- LTRA
- Albuterol PRN as rescue
- Add LAMA
- Consider biologics

GINA

- High-dose ICS/LABA, with PRN ICS/formoterol as rescue
- LTRA
- LAMA
- Consider biologics
- Systemic glucocorticoids

Medications - Step 6

NAEPP

- Daily medium to high-dose ICS/LABA
- LTRA
- Albuterol PRN as rescue
- Add LAMA
- Consider bioloigics
- Systemic glucocorticoids

Inhaler Types

Controllers/Relievers?!

- Low dose inhaled steroid + LAMA
- Low dose ICS + SABA, Approved Jan 2023- FDA approves drug combination treatment for adults with asthma
 - Airsupra (albuterol and budesonide) inhalation aerosol
 - For the as-needed *treatment or prevention* of bronchoconstriction and to reduce the risk of asthma attacks in patients with asthma 18 years of age and older.
 - Combination of albuterol (a beta-2 adrenergic agonist) and budesonide (a corticosteroid)
 - Dose: 2 inhalations of a combination of albuterol 90 mcg and budesonide 80 mcg per inhalation (total dose albuterol 180 mcg and budesonide 160 mcg) as needed for asthma symptoms.

It is the first combination of an inhaled corticosteroid (ICS) and a short-acting beta-agonist to be approved in the U.S. Additionally, *Airsupra is the first product containing an ICS to be approved in the U.S. as a reliever treatment* (rather than as a controller) for asthma.

The treatment works to relax the muscles and reduce inflammation in the lung airways to reduce the risk of severe asthma attacks.

GLUCOCORTICOIDS

"Systemic corticosteroids use is associated with increased risk of infections and cardiovascular events; of chronic conditions such as type 2 diabetes mellitus, osteoporosis, and cataracts; of metabolic effects such as weight gain; and of neuropsychiatric effects such as insomnia, depression, and behavioral disturbances.

A dose-response relationship with systemic corticosteroid exposure has been documented for many of these events.-

Even short-term use of oral corticosteroids (OCS) in a large populationbased study has been associated with increased rates of sepsis, thromboembolism, and fracture within 30 days of OCS initiation. Of note, decreases in serum cortisol and markers of bone formation, and changes in white blood cell counts, are evident within hours of oral prednisone administration to healthy subjects."

(*Price, et al., 2018*)

If you have patients needing even 1-2 bursts of steroids/year for their asthma,

PLEASE CONSIDER SENDING TO ASTHMA SPECIALIST!!!

GLUCOCORTICOTOS We can hel

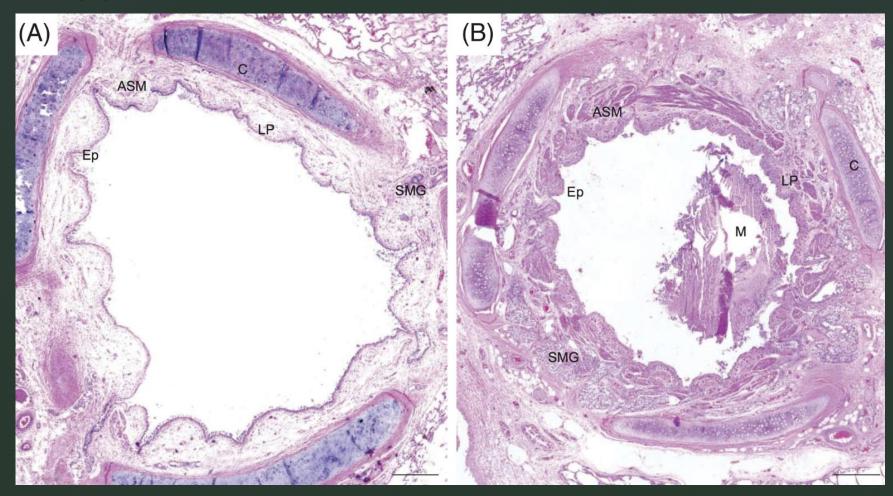
We can help with the following

- Disease education
- Inhaler training
- Exploring and mitigating comorbidities
- Advancing to higher steps of care

So, what is severe asthma?

 Asthma that requires treatment with high dose ICS + second controller and/or systemic corticosteroids to prevent it from becoming 'uncontrolled' or that remains 'uncontrolled' despite this therapy.

Defining "Uncontrolled"


- Poor symptom control (frequent use of rescue/reliever, night time waking, missing work or school)
- Frequent severe exacerbations (>= 2 bursts of systemic steroid in the past year, 1 ED visit or hospitalization for asthma in the past year, history of ICU stay or mechanical ventilation for asthma, or FEV1 that is <80%.) Relatively large proportion of resource expenditure, only 10% prevalence

(Chung et al., 2013)

Chronic airway inflammation seen in Asthma

Healthy patient without asthma

Case of fatal asthma

(*King et al.*, 2018)

Treating Severe Asthma

- First, make sure it's asthma Not every wheeze is asthma!
 - Differentials in adults:
 - Chronic obstructive pulmonary disease
 - Bronchiectasis (Asthma treatment could make this worse!)
 - Congestive heart failure
 - Gastroesophageal reflux disease,
 - Mechanical obstruction of the airways (e.g., tumors, foreign bodies, subglottic stenosis)
 - Vocal cord dysfunction or other laryngeal dysfunction
 - Pulmonary embolism
 - Pulmonary infiltrates with eosinophilia or other parenchymal disease
 - Upper airway disease
 - Differentials in children:
 - Foreign body aspiration causing airway obstruction
 - Pneumonia/bronchiolitis
 - Cystic fibrosis
 - Bronchopulmonary dysplasia (in premature infants)
 - Primary ciliary dyskinesia syndrome
 - Immune deficiency

NOT Asthma

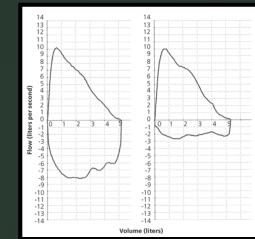
Severe thrush Fungal laryngitis

Severe polypoid corditis from smoking and reflux

NOT Asthma

Sinusitis

AE.


5360000 4³

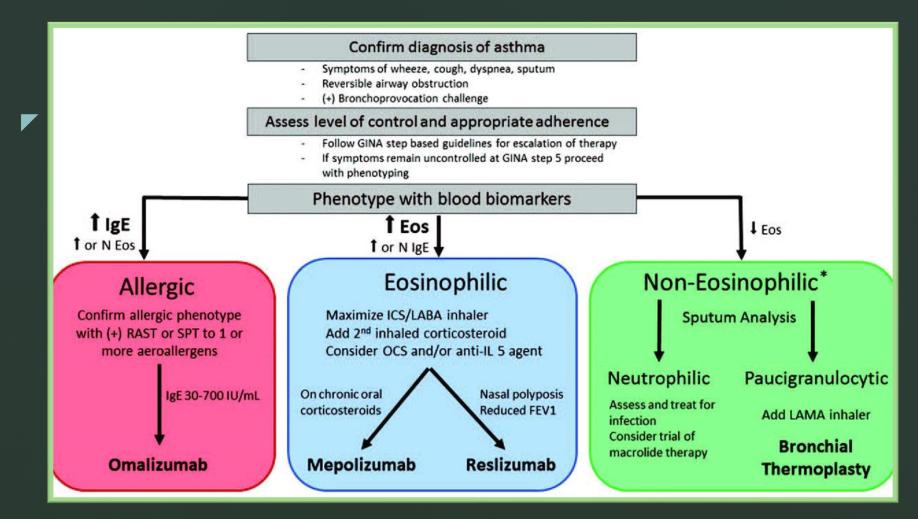
: 68

165 AS.QCC 874

Paradoxical Vocal Fold Motion

Courtesy: C. Milstein, PhD

Treating Severe Asthma


- Airway regimen optimized?
- Patients using inhalers correctly?
- Patients even HAVE their inhalers?!
- Comorbid conditions managed? (OSA, sinusitis, GERD, etc etc)

Treating Severe Asthma

- PHENOTYPE IT! Phenotype is the variable clinical presentation of a disease state related to both genetic and environmental influences.
 - Clinical characteristics (gender, age of onset, severity, response to steroids)
 - Physiology (lung function, airway hyperresponsiveness)
 - Triggers (respiratory infections, allergens, pollution, tobacco, aspirin sensitivity)

We eventually hope to be able to "endotype" using validated biomarkers too – endotype describing distinct pathophysiologic mechanisms at a cellular and molecular level

(Kuruvilla et al., 2019)

Algorithm to guide selection advanced therapies for severe asthma

(Oberle and Mathur, 2017)

Pregnancy and Asthma – Are Meds Safe?

 Primary goals of asthma treatment during pregnancy are preventing exacerbations and minimizing maternal impairment.

"The benefits of good adherence to asthma regimens during pregnancy outweigh the risks associated with the medications used."

(Kher & Mota, 2017)

Uncontrolled asthma in pregnancy: Effects on mother and fetus

Maternal effects

Preeclampsia Pregnancy-induced hypertension Gestational diabetes Premature rupture of membranes Cesarean birth Chorioamnionitis Hyperemesis Postpartum hemorrhage

Fetal effects

Perinatal death Preterm birth Low birth weight Intrauterine growth restriction Congenital malformations Admission to neonatal intensive care unit Hyperbilirubinemia Respiratory distress syndrome Transient tachypnea of the newborn Asphyxia Increased risk of intracerebral hemorrhage, anemia

Drug therapy of maternal asthma:					
Former pregnancy risk categories					
Drug	Category ^a				
Short-acting beta-agonist Albuterol	с				
Long-acting beta-agonists Formoterol Salmeterol	C C				
Inhaled corticosteroids Budesonide (inhalation) Fluticasone (inhalation)	B C				
Leukotriene modifiers Montelukast, zafirlukast Zileuton	B C				
Monoclonal antibody Omalizumab	В				
Xanthine derivative Theophylline	с				
Intranasal corticosteroids Intranasal budesonide Intranasal fluticasone Intranasal mometasone Intranasal triamcinolone	B C C C				
* Former US Food and Drug Administration risk (see Drugs , this page).	k category				

Drug therany of maternal asthma:

Management of asthma exacerbations in pregnancy

Monitor to ensure the maternal oxygen saturation remains above 95%

Consider systemic (oral) corticosteroids

Administer rescue therapy with a short-acting beta-agonist

Consider hospital admission if symptoms do not improve with emergency room care

Consider admission to intensive care unit and mechanical ventilation if symptoms are severe or if patient shows signs of impending respiratory failure

Carefully monitor fetal health

TOBACCO CESSATION

Smoke a FRESH cigarette

F the cigarette you have been smoking stings or burns your throat, switch to Camels and see the difference.

It's the peppery dust left in tobacco by inefficient cleaning methods that makes you cough.

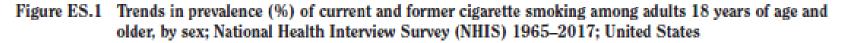
It's the unkindly hot smoke of harsh, driedout tobacco that burns and irritates your throat.

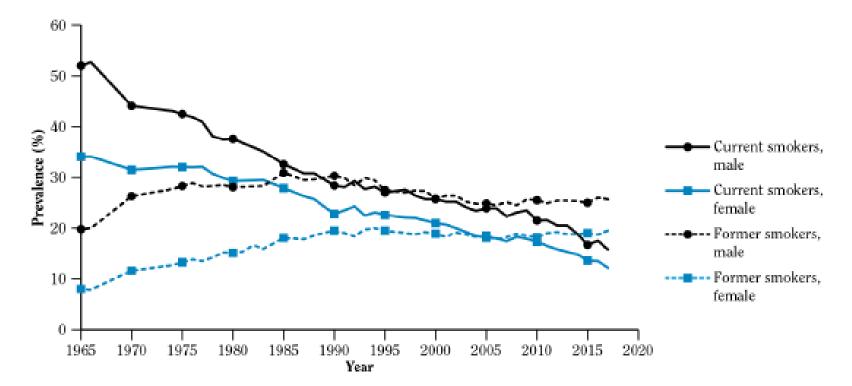
There is no peppery dust in Camels—that's whisked away by a special vacuum-cleaning process.

There are no stale, crumbly, parched tobaccos—the fine Turkish and mild Domestic tobaccos of which Camels are blended come to you in prime, factory-fresh condition, thanks to the Humidor Pack.

This scientific germ-safe wrapping-not plain ordinary Cellophane, but moistureproof Cellophane which costs nearly twice as much-seals in all the natural aroma and freshness, seals it so tightly that wet weather cannot make Camels damp, nor drought weather make them dry.

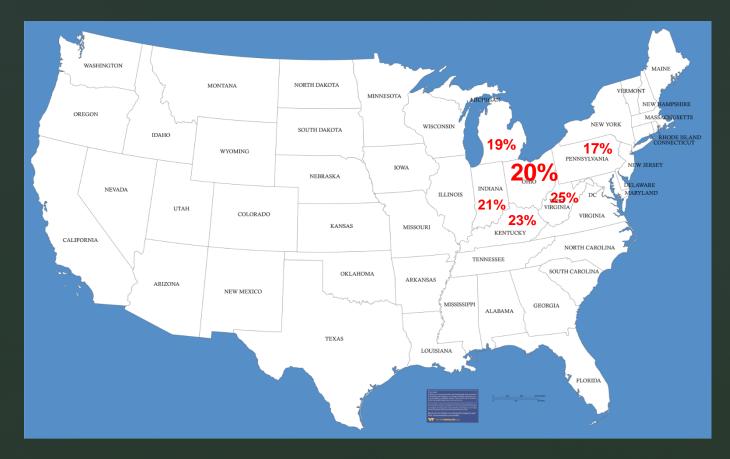
Camels are milder and more throat-friendly because they are dust-free and fresh.


Give your throat a vacation, switch to Camels for just one day. Then leave them—if you can.


Tune in CAMEL QUARTER HOUR featuring Morton Downey and Tony Wons — Camel Orchestra, direction Jacques Renard — Columbia System — every night except Sunday

Don't remove the moisture-proof wrapping from your package of Camels after you open it. The Humidor Pack is protection against dust and germs. In offices and homes, even in the dry atmosphere of artificial heat, the Humidor Pack delivers fresh Camels and keeps them right until the last one has been smoked Prevalence of cigarette smoking is decreasing in the United States

Trends in cigarette smoking among adults in the United States 1965 to 2017



Source: NHIS, National Center for Health Statistics, public use data, 1965–2017. Note: From 1965 to 2017, data were reported for the following years: 1965, 1966, 1970, 1974, 1976–1980, 1983, 1985, 1987, 1988, 1990–1995, and 1997–2017.

Current cigarette smoking among adults in the United States

US: 12.5% of adults currently smoke cigarettes ~30 million OH: 20% Cleveland: 35 % (2015)

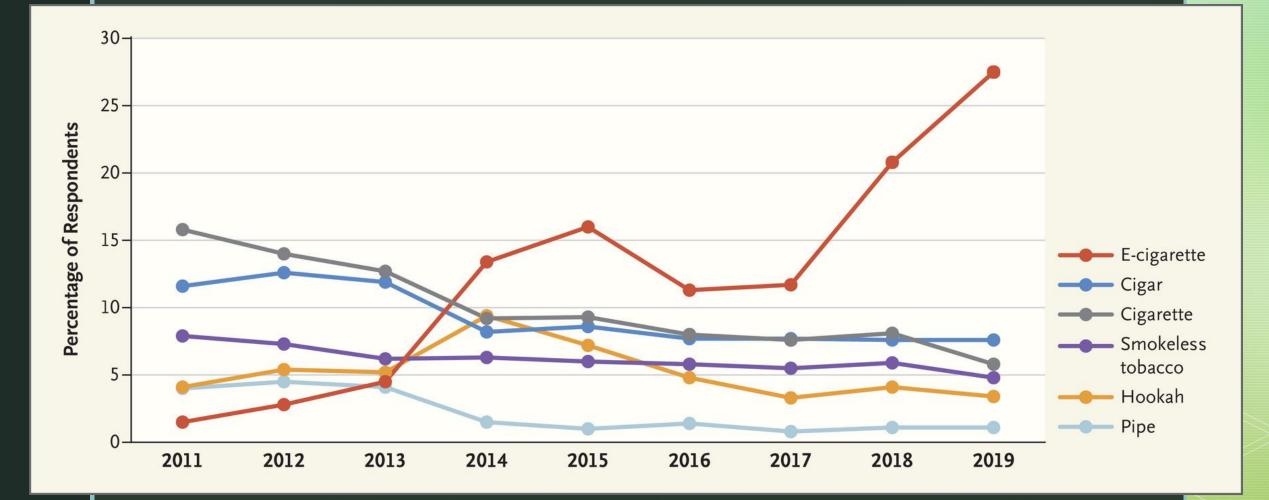
https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm#:~:text=This%20means%20an%20esti mated%2030.8,with%20a%20smoking%2Drelated%20disease.

The prevalence of electronic cigarette or vape use among teenagers is worrisome

14.1% of high school students and 3.3% of middle school students reported current use of e-cigarettes

	Ove	erall	Highs	school	Middle school		
Characteristic	Estimated weighted no. [†]	% (95% Cl)	Estimated weighted no. [†]	% (95% Cl)	Estimated weighted no. [†]	% (95% Cl)	
Among all students (N = 28,291) Current use of e-cigarettes	2,550,000	9.4 (8.0–11.1)	2,140,000	14.1 (12.4–16.0)	380,000	3.3 (2.6-4.2)	
Among current e-cigarette users							
Frequency of use during past 30 days							
1–5 days	1,030,000	40.6 (37.2-44.1)	790,000	37.2 (33.4-41.1)	230,000	60.0 (53.3-66.3)	
6–19 days	430,000	17.1 (14.2-20.4)	360,000	16.8 (13.9-20.2)	70,000	19.3 (12.7–28.3)	
20–30 days	1,080,000	42.3 (38.5-46.3)	980,000	46.0 (41.6–50.4)	80,000	20.8 (15.8-26.8)	
Daily e-cigarette use [§]	700,000	27.6 (24.5–31.0)	640,000	30.1 (26.6–33.9)	40,000	11.7 (8.0–16.7)	

Disposable and "unknown" brands are the most common


	Ove	rall	High se	chool	Middle school		
Characteristic	Estimated weighted no. [†]	% (95% Cl)	Estimated weighted no. [†]	% (95% Cl)	Estimated weighted no. [†]	% (95% Cl)	
Device type most often used [¶]							
Disposables	1,390,000	55.3 (49.5-61.0)	1,210,000	57.2 (51.7-62.6)	170,000	45.8 (34.5-57.6)	
Prefilled or refillable pods or cartridge	es 630,000	25.2 (19.7-31.5)	540,000	25.7 (20.2-32.0)	80,000	21.6 (12.8–33.9)	
Tanks or mod system	160,000	6.7 (5.3-8.4)	120,000	5.9 (4.5–7.8)	30,000	9.8 (7.1–13.5)	
Don't know the type	320,000	12.8 (10.2–16.1)	230,000	11.2 (8.6–14.4)	80,000	22.8 (17.0–29.9)	
Any brand**							
Puff Bar	730,000	29.7 (25.5-34.4)	610,000	29.3 (25.0-34.0)	110,000	30.9 (21.3-42.4)	
Vuse	580,000	23.6 (17.9-30.3)	490,000	23.8 (17.9-30.9)	70,000	20.9 (13.2-31.3)	
JUUL	540,000	22.0 (17.8-26.9)	440,000	21.2 (16.3-27.1)	80,000	23.8 (17.8-30.9)	
SMOK (including NOVO)	330,000	13.5 (10.8–16.6)	290,000	14.3 (11.4–17.9)	20,000	7.8 (4.4–13.5)	
YOUN	200,000	8.3 (6.0–11.4)	170,000	8.2 (5.6–11.7)	20,000	7.3 (4.3–12.1)	
Hyde ⁺⁺	180,000	7.3 (4.4–12.0)	160,000	7.9 (4.6–13.3)			
blu	160,000	6.5 (4.9-8.6)	110,000	5.6 (3.9–7.8)	30,000	10.2 (5.7–17.6)	
STIG	120,000	5.0 (3.6-6.8)	90,000	4.7 (3.2-6.7)			
Suorin	110,000	4.8 (3.6-6.5)	90,000	4.8 (3.5-6.5)			
Logic	100,000	4.3 (3.0-6.1)	70,000	3.8 (2.5-5.6)			
Mojo	90,000	4.0 (2.8-5.5)	70,000	3.7 (2.6-5.3)			
Leap	90,000	3.7 (2.6-5.2)	60,000	3.0 (2.0-4.4)			
Fonemoko	80,000	26(24 52)	60,000	20(19.47)		66	
Some other brand not listed	790,000	32.2 (27.8-37.0)	670,000	32.2 (27.4–37.4)	120,000	32.8 (25.5-41.0)	
Not sure/Don't know the brand	700,000	28.3 (24.8–32.0)	550,000	26.7 (22.7–31.1)	140,000	37.4 (29.7–45.8)	

Strong preference for fruit and candy flavors

85% used flavored e-cigarettes

	Ov	Overall		school	Middle school		
Characteristic	Estimated weighted no. [†]	% (95% Cl)	Estimated weighted no. [†]	% (95% Cl)	Estimated weighted no. [†]	% (95% Cl)	
Flavor type used ⁺⁺⁺							
Fruit	1,450,000	<u>69.1 (65.4–72.6)</u>	1,220,000	68.5 (64.4-72.3)	210,000	<u>71.1 (63.9–77.3)</u>	
Candy, desserts, or other sweets	800,000	38.3 (33.8–42.9)	660,000	37.3 (32.6–42.2)	130,000	43.6 (36.3–51.3)	
Mint	610,000	29.4 (25.6-33.5)	540,000	30.3 (25.9-35.1)	70,000	23.7 (18.9-29.3)	
Menthol	550,000	26.6 (21.0-33.1)	500,000	28.2 (22.2-35.2)	40,000	16.2 (10.3-24.6)	
Alcoholic drinks	150,000	7.6 (5.6-10.2)	120,000	6.8 (4.7-9.8)	30,000	10.8 (7.0-16.1)	
Chocolate	80,000	4.3 (3.1-5.9)	60,000	3.8 (2.7-5.3)		5	
Clove or spice	60,000	2.9 (1.9-4.6)	40,000	2.6 (1.6-4.2)		§	
Some other flavor not listed	240,000	11.7 (10.1-13.6)	200,000	11.7 (9.9-13.7)	30,000	11.9 (8.0–17.5)	

Current tobacco product use among U.S. High School students 2011 to 2019

NEJM January 17, 2020

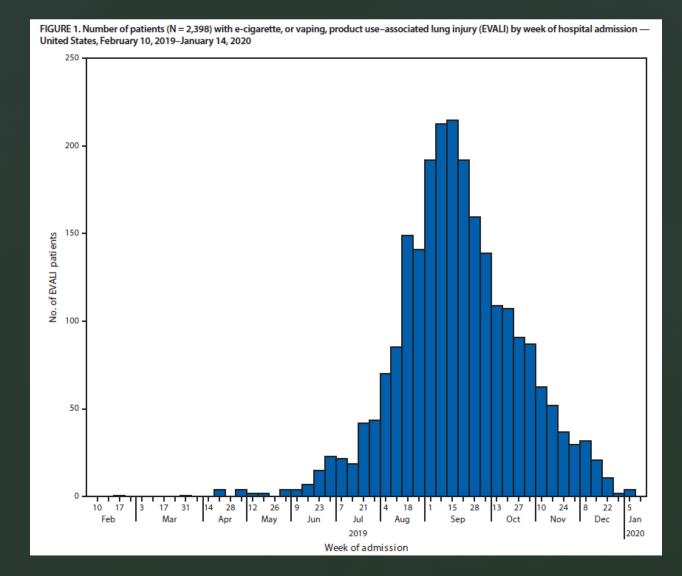
Electronic cigarettes or vapes are associated with acute lung inflammation

CDC - EVALI hospitalizations and deaths

Number of hospitalized EVALI cases and deaths in the United States

As of February 18, 2020

Hospitalizations


- 2,807 cases

Deaths

- 68 deaths have been <u>confirmed</u> in 29 states

https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html

EVALI hospitalizations declined after sharp increase in August-September 2019

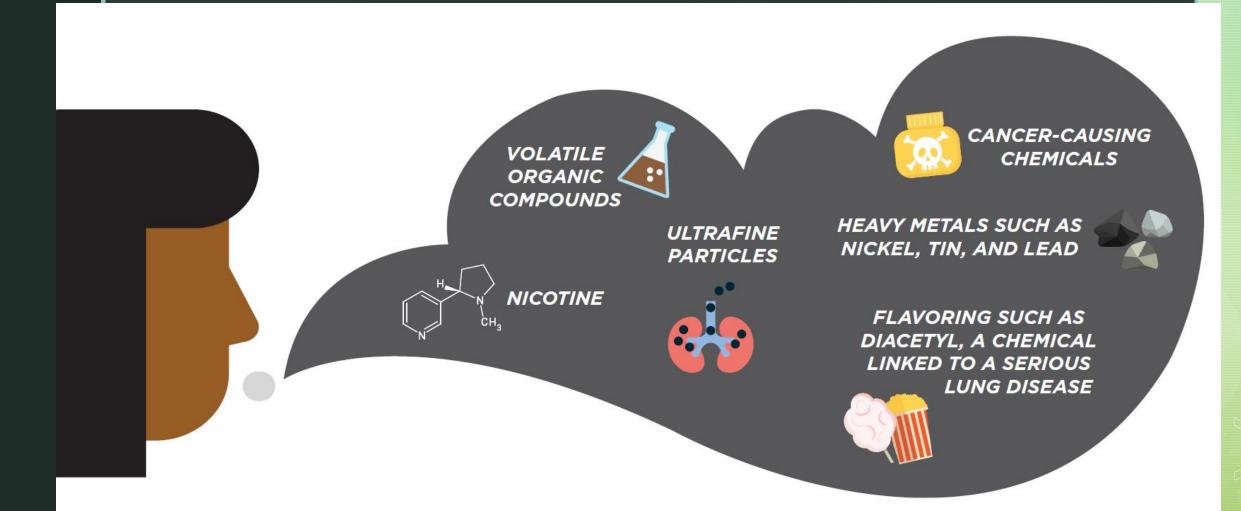
EVALI hospitalizations and deaths

•82% reported using THC-containing products

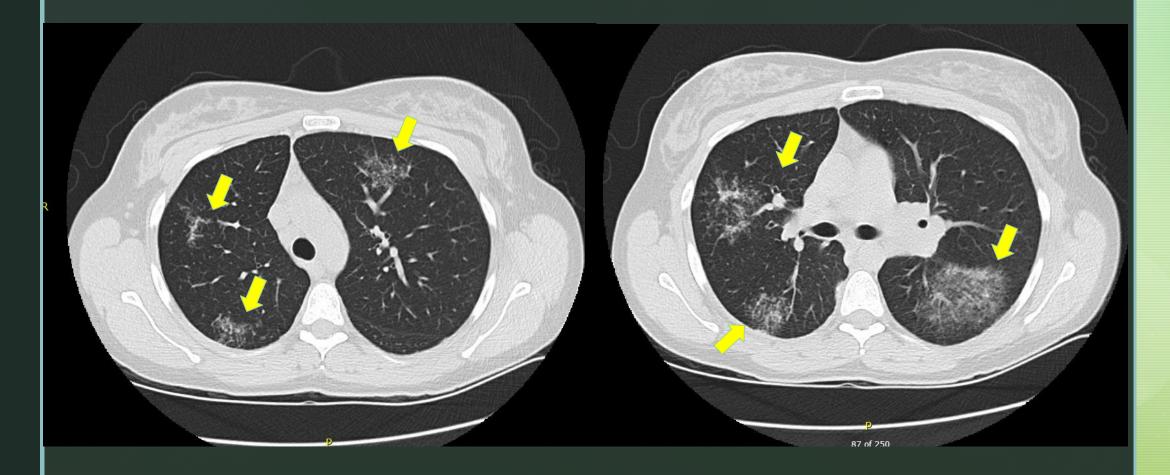
50% provided information about source -> 78% informal sources

57% reported using nicotine-containing products

54% provided information about source -> 17% informal sources


https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html

Which substance was associated with EVALI?


Vitamin E acetate is an additive was linked to the EVALI outbreak.

- A study external icon analyzed samples from 51 EVALI cases and a comparison group of samples from 99 comparison individuals without EVALI
- Vitamin E acetate was identified in BAL fluid samples from 48 of the 51 EVALI patients

That's only part of the story

Acute lung inflammation after vaping

3 months after stopping vaping

Lin C et al. Repir Med Cae Rep 2020; 31:101169

EVALI requiring ICU admission

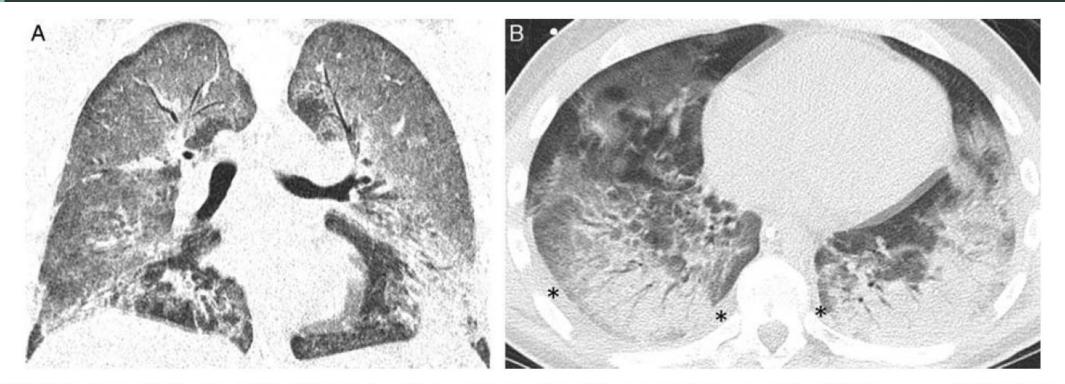
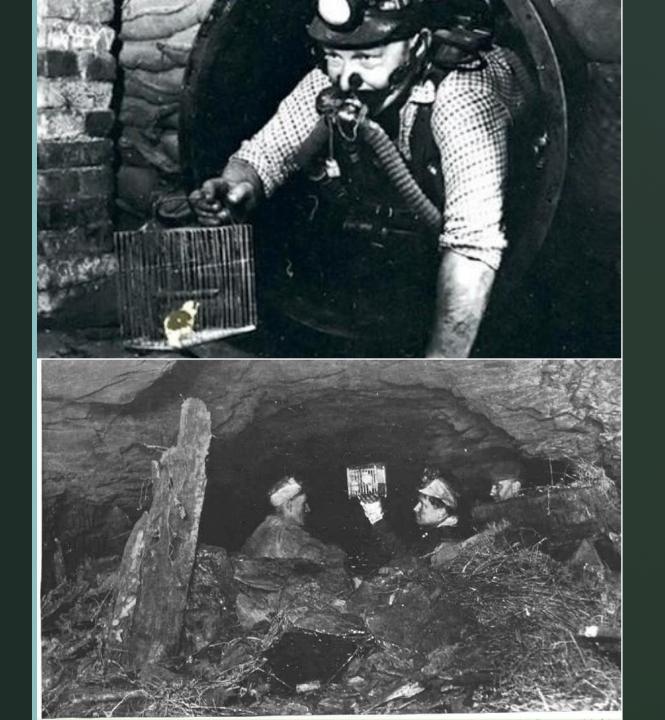



FIGURE 1. Coronal (A) and axial (B) CT images in a 21-year-old man show diffuse ground-glass opacities with dense consolidations in the posterior lower lobes, suggestive of DAD. Trace pleural effusions (asterisks) are noted.

J Thorac Imaging 2020;35:277-284

The long term effects of electronic cigarettes or vapes are unknown

It is unknown whether vaping can cause

COPD

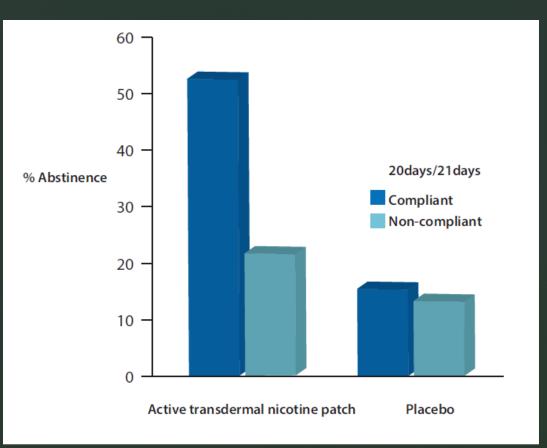
Lung fibrosis

- Heart disease
- Cancer

E-cigarettes contain harmful chemicals

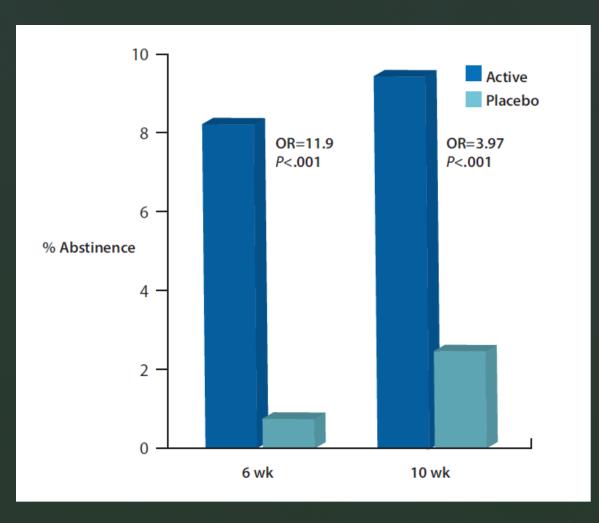
Table 1. Levels of Toxicants in E-Cigarette Aerosol Compared With Nicotine Inhaler and Cigarette Smoke									
Toxicant	Range in Content in Aerosol From 12 E-Cigarette Samples per 15 Puffs*	Range in Content in Conventional Cigarette Micrograms in Mainstream Smoke From 1 Cigarette	Content in Nicotine Inhaler Mist per 15 Puffs*						
Formaldehyde, µg	0.2–5.61	1.6–52	0.2						
Acetaldehyde, µg	0.11-1.36	52-140	0.11						
Acrolein, µg	0.07-4.19	2.4–62	ND						
o-Methylbenzaldehyde, μ g	0.13-0.71		0.07						
Toluene, µg	ND-0.63	8.3–70	ND						
p,m-xylene, µg	ND-0.2		ND						
NNN, ng	ND-0.00043	0.0005-0.19	ND						
NNK, ng	ND-0.00283	0.012-0.11	ND						
Cadmium, ng	ND-0.022		0.003						
Nickel, ng	0.011-0.029		0.019						
Lead, ng	0.003-0.057		0.004						

Pharmacotherapy and behavioral support are each effective when used alone, but combining them is more effective.

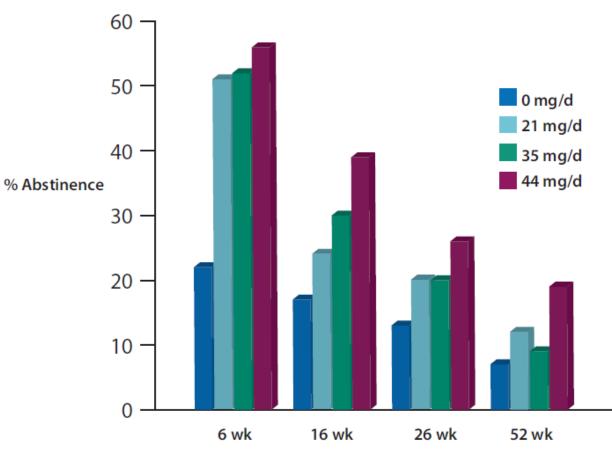

Effectiveness of methods used to treat tobacco dependence

Method	Versus placebo Odds ratio (95% Cl)	Estimated abstinence rate
Patch	1.64 (1.52-1.78)	23.4%
Gum	1.49 (1.40-1.60)	19%
Lozenge	1.95 (1.61-2.36)	24.2%
Inhaler	1.90 (1.36-2.67)	24.8%
Nasal spray	2.02 (1.49-2.73)	26.7%
Bupropion	2.0 (1.8-2.2)	24.2%
Varenicline	3.1 (2.5-3.8)	33.2%
Long+short NRT	1.25 (1.15-1.36) vs single NRT	
Varenicline+NRT	1.62 (1.18-2.23) vs varenicline alone	

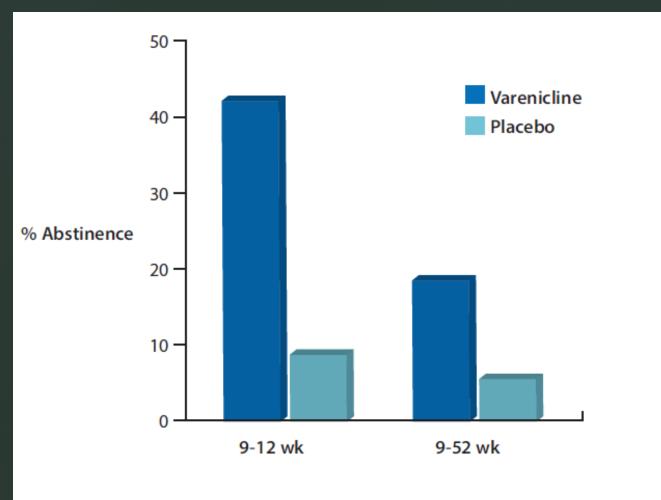
Stead LF, Perera R, Bullen C, et al. Nicotine replacement therapy for smoking Rigotti et al. Treatment of tobacco smoking. A review. JAMA 2022;327(6):566-577. cessation. Cochrane Database Syst Rev 2012; 11:CD000146


Wearing NRT patches consistently increases quit rates

Advise not to skip dates -> they won`t work if they are not used.



Continually wearing patches after lapse promotes recovery

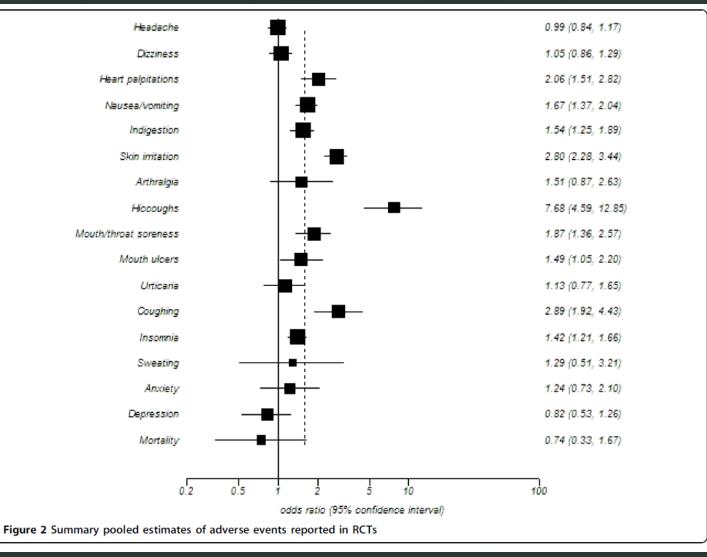

It won't work if they are not used.

Higher-dose nicotine patches are safe and may be more effective

Extending varenicline for 6 months to prevent relapse is effective

2018 ACC Expert Consensus Decision Pathway on Tobacco Cessation Treatment

TABLE 4 Recommended Pharmacotherapy for Smoking Cessation in Patients with CVD									
	Outpatient With Stable CVD	Inpatient With ACS							
1st line	Varenicline OR combination NRT*	In-hospital to relieve nicotine withdrawal: Nicotine patch OR combination NRT* At discharge: Combination NRT or varenicline†							
2nd line	Bupropion OR single NRT product	At discharge: Single NRT product							
3rd line	Nortriptyline‡	Bupropion§							
If single agent is insufficient to achieve abstinence	Combine categories of FDA-approved drugs: Varenicline + NRT (single agent) Varenicline + bupropion Bupropion + NRT (single agent)	n/a							


Tobacco treatment is safe

There is no significant increase in the risk of serious adverse events with the use of nicotine-replacement therapy

Meta- regression analysis

- 92 RCTs involving 32,185 participants

- 28 observational studies involving 145,205 participants

Tobacco Induced Diseases 2010; 8:8

Risk of neuropsychiatric adverse events with varenicline

Risk of depression events associated with varenicline use in 31 placebo RCT

Study	No of ever Treatment		Odds ratio (95% Cl)	v	Veight (%)	t Odds ratio (95% CI)
Nides 2006	2/125	1/123	_		3	0.01 (-0.02 to 0.03)
Tonstad 2006	15/602	17/604			13	-0.00 (-0.02 to 0.01)
Jorenby 2006	6/343	1/340			7	0.01 (-0.00 to 0.03)
Onken 2006	6/253	4/121			3	-0.01 (-0.05 to 0.03)
Gonzales 2006	4/349	7/344	•		7	-0.01 (-0.03 to 0.01)
Williams 2007	12/251	4/126			4	-0.02 (-0.02 to 0.06)
Tsai 2007	1/126	2/124	_		3	0.01 (-0.04 to 0.02)
Niaura 2008	3/157	2/155	_		3	0.01 (-0.02 to 0.03)
Faessel 2009	0/14	0/7			<1	0.00 (-0.19 to 0.19)
Rigotti 2010	5/353	3/350			7	0.01 (-0.01 to 0.02)
Fagerstrom 2010	2/213	5/218			5	-0.01 (-0.04 to 0.01)
Hughes 2011	1/107	2/111	_		2	-0.01 (-0.04 to 0.02)
Garza 2011	1/55	1/55			1	0.00 (-0.05 to 0.05)
Brandon 2011	0/46	0/54	+		1	0.00 (-0.04 to 0.04)
Ebbert 2011	0/38	1/38			1	-0.03 (-0.10 to 0.04)
Steinberg 2011	2/40	2/39			1	-0.00 (-0.10 to 0.10)
Bolliger 2011	8/390	4/198			6	0.00 (-0.02 to 0.02)
Tashkin 2011	6/248	5/251			5	0.00 (-0.02 to 0.03)
Williams 2012	4/84	3/43			1	-0.02 (-0.11 to 0.07)
Rennard 2012	4/486	5/165			5	-0.02 (-0.05 to 0.01)
Wong 2012	2/151	2/135	÷		3	-0.00 (-0.03 to 0.03)
Zesiewicz 2012	0/9	2/9			<1	-0.22 (-0.52 to 0.08)
McClure 2013	17/41	20/42			1	-0.06 (-0.27 to 0.15)
Stein 2013	17/111	7/33			1	-0.06 (-0.21 to 0.10)
Litten 2013	7/97	6/101	-		2	0.01 (-0.06 to 0.08)
Cinciripini 2013	6/86	14/106			2	-0.06 (-0.15 to 0.02)
Meszaros 2013	1/5	1/5			<1	0.00 (-0.50 to 0.50)
Anthenelli 2013	17/256	13/269			6	0.02 (-0.02 to 0.06)
Evins 2014	1/40	1/47	-		1	0.00 (-0.06 to 0.07)
Chengappa 2014	8/31	2/29		_	1	0.19 (0.01 to 0.37)
Gonzales 2014	5/249	2/245			5	0.01 (-0.01 to 0.03)
Overall: I ² =0%, P=0.783	163/5356	139/4487			100	-0.00 (-0.01 to 0.01)
		-0.	5 0	0	.5	
		Fav	vours atment	Favou placeb		

Increased risk:

- sleep disorders
- insomnia
- abnormal dreams
- Fatigue

No increased risk:

- Depression
- Suicidal ideation
- Aggression
- Death

No significant increased risk of adverse cardiovascular events associated with varenicline

	Events/No o in study									
Author	Varenicline	e Placebo			differer 95% CI)	ice			Weight (%)	Risk difference (95% CI)
Fagerström 2010	0/214	1/218		-	-				5.12	-0.0046 (-0.0173 to 0.0081
Rennard 2012	0/493	0/166			-				5.89	0.0000 (-0.0087 to 0.0087)
A3051072 2012	0/85	0/43			-	<u> </u>			1.35	0.0000 (-0.0352 to 0.0352)
Hong 2011	0/20	0/21	-		_				0.49	0.0000 (-0.0902 to 0.0902)
Ebbert 2011	0/38	0/38			-				0.90	0.0000 (-0.0499 to 0.0499)
Garza 2011	0/55	0/55			-				1.30	0.0000 (-0.0348 to 0.0348
Hughes 2011	0/107	0/111		-					2.58	0.0000 (-0.0178 to 0.0178
Wang 2009	0/165	0/168							3.95	0.0000 (-0.0117 to 0.0117
Poling 2010	0/13	0/18	*		-				0.36	0.0000 (-0.1210 to 0.1210
Steinberg 2011	1/40	1/39	-		-		_		0.94	-0.0006 (-0.0699 to 0.0687
Jorenby 2006	1/344	1/341							8.13	0.0000 (-0.0081 to 0.0081
Gonzales 2006	2/352	2/344			-				8.25	-0.0001 (-0.0114 to 0.0111
Rigotti 2010	10/355	10/359			_	-			8.47	0.0003 (-0.0239 to 0.0245
Oncken 2006	2/518	0/129			-				4.90	0.0039 (-0.0083 to 0.0161
Nides 2006	1/383	0/127							4.53	0.0026 (-0.0099 to 0.0151
Nakamura 2007	1/465	0/154			-				5.49	0.0022 (-0.0082 to 0.0125
Bolliger 2011	1/394	0/199			-				6.27	0.0025 (-0.0067 to 0.0117
Tsai 2007	1/126	0/124			_	_			2.97	0.0079 (-0.0139 to 0.0297
Niaura 2008	2/160	0/160			-	_			3.80	0.0125 (-0.0084 to 0.0334
Tonstad 2006	2/603	0/607							14.35	0.0033 (-0.0023 to 0.0089
Williams 2007	6/251	1/126							3.98	0.0160 (-0.0085 to 0.0404
Tashkin 2011	4/250	2/254			-	-			5.98	0.0081 (-0.0108 to 0.0271
Overall: I ² =0%, P=1.00	34/5431	18/3801			+				100.00	0.0027 (-0.0010 to 0.0063
		-(0.12 -0.08	-0.04	0	0.04	0.08	0.	12	
			lore serious ac vents in placel		ev		serious a arenicline			

Examples: myocardial infarction, unstable angina, coronary revascularisation, coronary artery disease, arrhythmias, transient ischaemic attacks, stroke, sudden death or cardiovascular related death, or congestive heart failure.

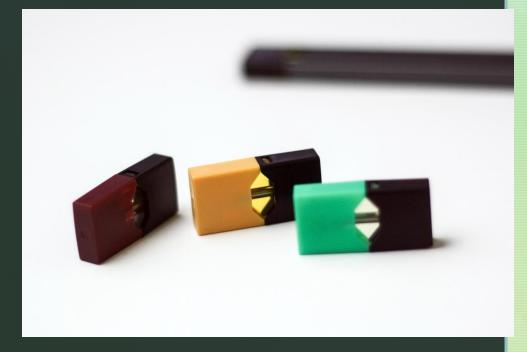
BMJ 2012;344:e2856

We don't know the best way to treat nicotine dependence associated with electronic cigarettes

Electronic cigarettes

There are different types of e-cigarette devices.

Dinardo P, Rome E. Vaping the new wave of nicotine addiction. Clev Clin J Med 2019.


E-liquids

There are even more different types of e-liquids

Nicotine content in cigarettes vs e-cigs

- 1 cigarette = 10-12 mg nicotine
- 1 cigarette = inhale 1-1.8mg nicotine
- 1 pack = inhale 20-36 mg nicotine

1 JUUL pod 3% = 23mg nicotine

1 JUUL pod 5% = 40 mg nicotine

Electronic cigarettes or vapes are not smoking cessation aids

NRT vs e-cigarette with nicotine 18mg

Table 2. Abstinence Rates at Different Time Points and Smoking Reduction at 52 Weeks.*

Outcome	E-Cigarettes (N=438)	Nicotine Replacement (N=446)	Primary Analysis: Relative Risk (95% Cl)†	Sensitivity Analysis: Adjusted Relative Risk (95% CI)
Primary outcome: abstinence at 52 wk — no. (%)	79 (18.0)	44 (9.9)	1.83 (1.30–2.58)	1.75 (1.24–2.46)‡
Secondary outcomes			-	
Abstinence between wk 26 and wk 52 — no. (%)	93 (21.2)	53 (11.9)	1.79 (1.32–2.44)	1.82 (1.34–2.47)§
Abstinence at 4 wk after target quit date — no. (%)	192 (43.8)	134 (30.0)	1.45 (1.22–1.74)	1.43 (1.20–1.71)¶
Abstinence at 26 wk after target quit date — no. (%)	155 (35.4)	112 (25.1)	1.40 (1.14–1.72)	1.36 (1.15–1.67)‡
Carbon monoxide–validated reduction in smoking of ≥50% in participants without abstinence between wk 26 and wk 52 — no./total no. (%)		29/393 (7.4)	1.75 (1.12–2.72)	1.73 (1.11–2.69)

80% of those in the e-cigarette group were still vaping at 12 months 9% of the NRT group were still using NRT

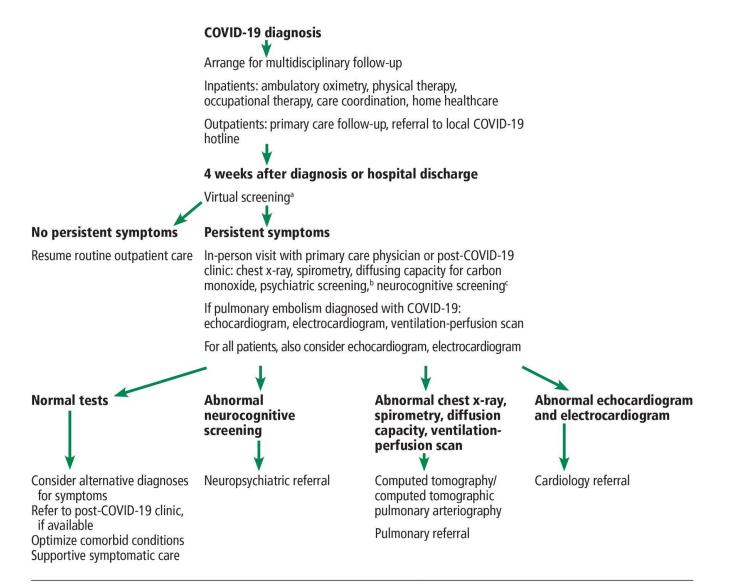
N Engl J Med 2019;380:629-37.

Electronic cigarettes or vapes are not smoking cessation aids

2021 Cochrane systematic review with 16,759 participants
E-cigarettes more effective than NRT or non-nicotine devices (moderate certainty)

USPSTF

- Evidence is insufficient to evaluate balance of risk and benefits


General Recommendation

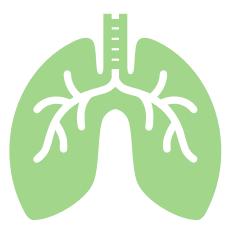
- Use FDA approved smoking cessation aids

COVID-19

Post-COVID Syndrome (PCS) The most commonly reported symptoms are fatigue, cough, shortness of breath, chest, difficulty concentrating, arthralgia, low-grade fever, and headache

Cleveland Clinic Journal of Medicine May 2021, 88 (5) 267-272; DOI: https://doi.org/10.3949/ccjm.88a.21010

^aScreening tools to consider: Post-COVID-19 Functional Status Scale, COVID-19 Yorkshire Rehabilitation Screen, University of Pennsylvania Post-COVID Screening Measures.


^bAvailable psychiatric screening tools: General Anxiety Disorder-7 (GAD-7), Patient Health Questionnaire-9 (PHQ-9; for depression screening), PTSD Checklist for DSM-5 (PCL-5), Impact of Event Scale-6 (IES-R; for PTSD screening), Hospital Anxiety and Depression Score (HADS).

^c Available neurocognitive screening tools: Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Cognitive Assessment Tool Rapid Version (CAT-rapid).

 Fatigue represents the most common concern in patients with PCS

 Respiratory symptoms are common in PCS patients with PCS, and dyspnea is often the most prevalent

Approximately 5% of patients develop adult respiratory distress syndrome (ARDS).Breathlessness and cough are noted in a substantial proportion of patients with long COVID-19

Batiha GES, Al-Kuraishy HM., Al-Gareeb Al, et al.

In one survivor study, 42% of patients evaluated in clinic three months after hospital discharge had a significant reduction in diffusion capacity of the lung on pulmonary function testing, and this finding is the most commonly reported physiological lung impairment after acute COVID-19.

Van den Borst B, et al.

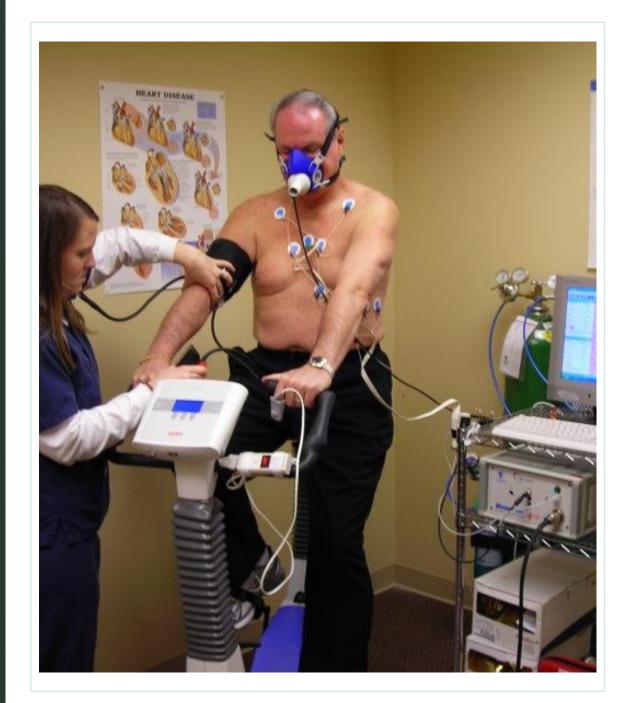
Roughly half of COVID-19 survivors have persistent and pulmonary radiological changes for up to six months following the acute illness.

Treatment

All patients with persistent dyspnea following a COVID-19 illness should undergo pulmonary function testing and high-resolution chest imaging. Evidence of variable or fixed airflow obstruction can be managed with a trial of **inhaled steroid and longacting bronchodilator therapy**. If patients do not have a clinical response to inhaled controller therapy, systemic steroids can be prescribed. Persistent Post-COVID-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment

- Annals of American Thoracic Society- 2021
- Observational Study of Corticosteroid Treatment
- 837 patients , 325 had on going symptoms (39%)
- ILD, PNA, functional deficit in 35 (4.8%)
- Given corticosteroids- significant improvement in radiological, and mean of 9.6% increase FVC

doi: 10.1513/AnnalsATS.202008-1002OC.


•Echocardiogram and ventilation/perfusion lung scanning can be ordered in the evaluation of persistent dyspnea, particularly if the pulmonary evaluation is unrevealing.

Invasive cardiopulmonary exercise testing can be performed if the pulmonary and cardiac evaluations are unremarkable.

•For unexplained dyspnea following COVID-19 illness, we recommend referral to **pulmonary rehabilitation**.

Patients can also be referred to speech-language pathologists for the evaluation of dysfunctional breathing patterns. This condition can be successfully managed with respiratory retraining therapy.

Cardiopulmonary exercise testing (CPET)

Patients with post-COVID-19 dyspnea require a multidisciplinary team approach to ascertain the cause of the patient's symptoms, and the pulmonary evaluation is critical to establishing a diagnosis and treatment plan.

https://recovercovid.org/

RECOVER: Researching COVID to Enhance Recovery The National Institutes of Health (NIH) created the RECOVER Initiative to learn about the long-term effects of COVID. The goal of RECOVER is to rapidly improve our understanding of and ability to predict, treat, and prevent PASC (post-acute sequelae of SARS-CoV-2), including Long COVID.

Questions!

Citations

"2022 GINA Main Report - Global Initiative for Asthma - GINA." Global Initiative for Asthma - GINA, https://ginasthma.org/gina-reports/. Accessed 20 Mar. 2023.

Aravena C, Almeida FA, Mukhopadhyay S, Ghosh S, Lorenz RR, Murthy SC, Mehta AC. Idiopathic subglotic stenosis: A review. J. Thorac. Dis. 2020.; 12(3):1100-1111.

Batiha GES, Al-Kuraishy HM., Al-Gareeb Al, et al. Pathophysiology of Post-COVID syndromes: A new perspective. Virol. J. 2022;19(1):158.

Chipps, Bradley E., et al. "2020 NAEPP Guidelines Update and GINA 2021—Asthma Care Differences, Overlap, and Challenges." *The Journal of Allergy and Clinical Immunology: In Practice*, no. 1, Elsevier BV, Jan. 2022 pp. S19–30. Crossref, doi:10.1016/j.jaip.2021.10.032.

Chung, Kian Fan, et al. "International ERS/ATS Guidelines on Definition, Evaluation and Treatment of Severe Asthma." *European Respiratory Journal*, no. 2, European Respiratory Society (ERS), Dec. 2013, pp. 343–73. doi:10.1183/09031936.00202013.

Emson, C., Diver, S., Chachi, L. et al. CASCADE: a phase 2, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the effect of tezepelumab on airway inflammation in patients with uncontrolled asthma. Respir Res 21, 265 (2020).

"Environmental Triggers of Asthma: Overview of Asthma | Environmental Medicine | ATSDR." Agency for Toxic Substances and Disease Registry, https://www.atsdr.cdc.gov/csem/asthma/overview_of_asthma.html. Accessed 20 Mar. 2023.

"Guidelines for the Diagnosis and Management of Asthma 2007 (EPR-3) | NHLBI, NIH." NHLBI, NIH, http://www.nhlbi.nih.gov/guidelines/asthma/. Accessed 20 Mar. 2023.

Khajotia, R. "Classifying Asthma Severity and Treatment Determinants: National Guidelines Revisited." *Malaysian Family Physician : The Official Journal of the Academy of Family Physicians of Malaysia*, no. 3 (3), 2008, pp. 131–36.

Kher, Sucharita, and Prerna Mota. "Maternal Asthma: Management Strategies." Cleveland Clinic Journal of Medicine, no. 4, Cleveland Clinic Journal of Medicine, Jan. 2017, pp. 296–302. doi:10.3949/ccjm.84a.15046.

King, G.G., James, A., Harkness, L. and Wark, P.A.B. (2018) Pathophysiology of severe asthma: We've only just started. Respirology, 23: 262–271., doi: 10.1111/resp.13251.

Kuruvilla, Merin E., et al. "Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease." *Clinical Reviews in Allergy & Computer Science and Business Media LLC*, Sept. 2018, pp. 219–33. doi:10.1007/s12016-018-8712-1.

Mauer, Yael, and Rachel Metzger Taliercio. "Managing Adult Asthma: The 2019 GINA Guidelines." *Cleveland Clinic Journal of Medicine*, no. 9, Cleveland Clinic Journal of Medicine, Aug. 2020, pp. 569–75. doi:10.3949/ccjm.87a.19136.

Murphy. "National Asthma Education and Prevention Program 2020 Guidelines: What's Important for Primary Care." The Journal of Family Practice, no. 6 Supplement, Frontline Medical Communications, Inc., July 2021. Crossref, doi:10.12788/jfp.0219.

Myall, KJ, Mukherjee, B, Castanherira, AM, Lam, JL, et.al. Persistent Post-COVID-19 Interstitial Lung Disease: An Observational Study of Corticosteroid Treatment. *Ann Am Thoracic* Soc. 2021; 18(5): 799.

Oberle, Amber J., and Praveen Mathur. "Precision Medicine in Asthma." *Current Opinion in Pulmonary Medicine*, no. 3, Ovid Technologies (Wolters Kluwer Health), May 2017, pp. 254–60. doi:10.1097/mcp.000000000000372.

Price, David B., et al. "Adverse Outcomes from Initiation of Systemic Corticosteroids for Asthma: Long-Term Observational Study." *Journal of Asthma and Allergy*, Informa UK Limited, Aug. 2018, pp. 193–204. doi:10.2147/jaa.s176026.

Reddel, Helen K., et al. "GINA 2019: A Fundamental Change in Asthma Management." *European Respiratory Journal*, no. 6, European Respiratory Society (ERS), June 2019, p. 1901046. doi:10.1183/13993003.01046-2019.

Trejo Bittar, H. E., Doberer, D., Mehrad, M., Strollo, D. C., Leader, J. K., Wenzel, S., & Yousem, S. A. (2017). Histologic Findings of Severe/Therapy-Resistant Asthma From Video-assisted Thoracoscopic Surgery Biopsies. The American journal of surgical pathology, 41(2), 182–188. <u>https://doi.org/10.1097/PAS.000000000000777</u>

Van den Borst B, et al. Comprehensive Health Assessment Three Months After Recovery from Acute COVID-19. Clin Infect Dis. 2020; ciaa1750.

Vehar S. Boushra M. Ntiamoah P. et al. Update to Post-acute Sequelae of SARS-CoV-2 Infection: Caring for the 'Long-Haulers'. Clev Clin J Med. 2021, doi

THANK YOU!

- Dr. Logan Harper MD, MS
- Sarah Micklewright PA-C
- Dr. Humberto Choi, MD
- Howard A. Christie PA-C
- Dr. Donald DeCoy, MD

Cleveland Clinic

Every life deserves world class care.